Традиционными материалами, на протяжении многих лет применявшимися для окрашивания, были известковые составы. Реставрация исторических зданий, сохранивших первоначальную отделку, вызывает определенные трудности, связанные с несовместимостью известковой штукатурки с современными отделочными материалами. Как показывает практика, наилучшие результаты при восстановлении поверхностей, оштукатуренных известковыми штукатурными растворами, достигаются при использовании красок, близких по составу к историческим аналогам, т.е. известковых.
Вместе с тем, применение для реставрации памятников архитектуры вышеуказанных составов вызывает определенные трудности, связанные со стоимостью краски, ее низкой эксплуатационной стойкостью, применением целевых добавок, поставляемых из-за рубежа, и т.д. Это вызывает необходимость поиска новых решений повышения стойкости известковых составов, предназначенных для реставрации и отделки зданий и сооружений.
Для повышения стойкости известковых отделочных состав в их рецептуру вводят нанодисперсные добавки[ 1,2,3 ]. В данной применялась добавка – коллоидная дисперсия на основе диоксида кремния. Для получения золя кремниевой кислоты применялся способ, основанный на ионообменной хроматографии. Жидкое стекло плотностью 1056 кг/м3 пропускали через ионообменную колонку с катионитом и получали золь кремниевой кислоты с рН 4,5…5,0 плотностью 1013-1030 кг/м3. Методом турбидиметрии выявлено, что радиус частиц золя плотностью 1027 кг/м3 до 5 сут составляет 17…25 нм, а 7… 19 сут – 57…140 нм [4].
Электрокинетический потенциал дисперсной системы, характеризующий его стабильность и определенный электрофоретическим методом, изменяется в зависимости от возраста золя кремниевой кислоты. Золь кремниевой кислоты стабилен в возрасте до 15 сут, электрокинетический потенциал составляет (–) 0,03…0,103 В. В дальнейшем наблюдается уменьшение электрокинетического потенциала. Величина толщины диффузного слоя в возрасте 1 сут составляет 29,5 нм, что предопределяет его стабильность.
Расчет среднеквадратического сдвига частицы золя в соответствии с уравнением Эйнштейна-Смолуховского показал, что за 10 с среднеквадратический сдвиг частицы с радиусом 17 нм составил 1,89·10-5 м, что обуславливает высокую активность кремнезоля.
Установлено, что эффективными стабилизаторами для золя кремниевой кислоты являются желатин, поливиниловый спирт (ПВС) и катионитовый сополимер акриламида К-280.
Синтезируемая добавка на основе золя кремниевой кислоты была применена для модификации диатомита, в известковых отделочных составах [5 ].
При введении добавки золя в известковую смесь наблюдается ускорение набора пластической прочности. Спустя 48 ч после затворения пластическая прочность состава с добавкой золя SiO2 (отношение И:Золь = 1:1) составила τ=0,09 МПа, а у контрольного состава – τ=0,01 МПа
Введение добавки золя кремниевой кислоты способствует повышению прочности при сжатии известковых растворов. Так, прочность при сжатии при введении 2%-ного золя кремниевой кислоты при соотношении И:З=1:1 в возрасте 28 сут твердения составляет Rсж =1,7 МПа, а контрольного (без добавки золя) – 0,85 МПа. Повышение концентрации золя вызывает больший прирост прочности. При введение в рецептуру 4%-ного золя при соотношении И:З=1:1 прочность при сжатии составляет Rсж =1,98 МПа. Дальнейшее увеличение содержания золя кремниевой кислоты в рецептуре известковых отделочных покрытий при соотношении И:З=1:1,25 и И:З=1:1,5 вызывает незначительный прирост прочности. Установлено, что по комплексу физико-механических свойств оптимальным является соотношение известь:золь = 1:1 при использования 2%-ного золя. Применение двухпроцентного золя кремниевой кислоты обусловлено его жизнеспособностью, хотя 4%-ный золь дает большее увеличение прочности.
Для исследования реакций, происходящих в процессе структурообразования известковых отделочных композиций в присутствии добавки золя кремниевой кислоты, был проведен качественный рентгеноструктурный анализ на дифрактометре марки Thermo Scientific модели ARL X’TRA.
На рентгенограмме образца на основе известково-песчаного состава выявлены пики с межплоскостными расстояниями 4.916Ǻ, 3.115Ǻ, 2.629Ǻ, 1.928Ǻ, 1.797Ǻ, 1.688Ǻ, 1.556Ǻ, 1.483Ǻ, 1.419Ǻ, указывающие на содержание Са(ОН)2; пики, характерные для кальцита, образующегося в результате карбонизации извести: 3.857Ǻ, 3.040Ǻ, 2.493Ǻ, 2.098Ǻ, 1.913Ǻ, 1.876Ǻ, 1.622Ǻ, 1.608Ǻ, 1.602Ǻ, 1.529Ǻ. Выявлены также пики с межплоскостными расстояниями 4.267Ǻ, 3.349Ǻ, 1.829Ǻ, 1.549Ǻ, 1.543Ǻ, 1.449Ǻ, 1.383Ǻ, принадлежащие β-кварцу. Идентифицируются линии, соответствующие каолиниту Al2O32SiO22H2O – 7.177Ǻ, 4.491Ǻ, 3.571Ǻ, 2.567Ǻ, 2.343Ǻ, 1.981Ǻ [33, 94].
Гидрослюда, гетит, гематит присутствуют в небольших количествах, очевидно, как примесь к суглинку: K2O·3Al2O3·6SiO2·2H2O – гидрослюда типа иллита с d = [10.5- 9.5; 5.0; 4.50; …3.50- 3.49; 3.34; 3.095- 3.10; 2.86- 2.88; 2.56- 2.57;…1.49- 1.505] Ǻ; α-Fe2O3 – гематит с d=[2.69- 2.71; 2.50- 2.51; 1.69; 1.84…; 1.48; 1.451- 1.454;…] Ǻ; FeOOH или Fe2O3 H2O с d= [4.16- 4.18; 2.45- 2.46; 2.69- 2.70; 1.720…; 2.18- 2.19; 1.56- 1.55; 1.455 Ǻ.
Анализ рентгенограмм образца с добавкой золя кремниевой кислоты показал, что присутствуют минералы, характерные для состава №1, однако появляются линии гидросиликата кальция C-S-H (II) с d = 2.847Ǻ, 2.381Ǻ, 2.130Ǻ, 2.109Ǻ, 1.628Ǻ, 1.526Ǻ, свидетельствующие о взаимодействии извести с золем кремниевой кислоты при обычной температуре. Интенсивность пиков, указывающих на содержание извести Са(ОН)2, снижается по сравнению с контрольным составом.
Все пробы содержат кристаллическую и аморфную фазы. В пробе контрольного состава (без добавок) присутствуют две фазы – аморфная и кристаллическая с соотношением фаз 28% и 72%. В присутствии добавки золя кремниевой кислоты наблюдается уменьшение аморфной фазы и возрастание кристаллической, составляющее соответственно 24 и 76%.
На основании проведенных исследований разработана рецептура мастичных красочных составов, содержащих известь-пушонку, молотый суглинок, золь кремниевой кислоты, стабилизатор золя, сульфат алюминия, воду, а также рецептура декоративных штукатурных отделочных составов, включающих известь-пушонку, песок фракции 0,314-0,14мм, золь кремниевой кислоты, стабилизатор золя, сульфат алюминия, воду. В табл.1 приведены характеристики отделочных составов и покрытий на их основе.
Установлено, что по технологическим и эксплуатационным свойствам разработанные составы является более конкурентоспособным по сравнению с прототипом. Когезионная и адгезионная прочность известкового красочного состава значительно выше и составляют соответственно 1,7…1,9 МПА и 1,0…1,2 МПА, в то время как у прототипа – 0,8…1,3 МПА и 0,6…0,8 МПа. По жизнеспособности при хранении в открытых емкостях (7…9 ч) состав-прототип превосходит разработанный красочный состав, жизнеспособность которого составляет 5…7 ч. Разработанный красочный состав характеризуется замедленными сроками высыхания. Время высыхания до степени 5 составляет 47…50 мин, в то время как у состава-прототипа – 22…31 мин.
Когезионная и адгезионная прочность известкового декоративного штукатурного состава также выше, чем у состава прототипа, и составляют соответственно 1,5…1,7 МПА и 0,8…1,0 МПА, в то время как у прототипа – 0,7…1,2 МПА и 0,5…0,7 МПа. По жизнеспособности при хранении в открытых емкостях (8…10 ч) состав-прототип превосходит разработанный декоративный штукатурный состав, жизнеспособность которого составляет 6…8 ч. Предлагаемый штукатурный состав соответствует по водоудерживающей способности прототипу, которая составляет 98%. Разработанные составы являются экономичнее состава-прототипа, так, например, расход штукатурного состава при нанесении в 1 слой толщиной 10 мм составляет 1,1…1,3 кг/м2, а у состава-прототипа – 1,5…1,7 кг/м2.
Таблица 1. Технологические и эксплуатационные свойства отделочных составов
Наименование показателя |
Величина показателя красочного состава |
Величина показателя декоративного штукатурного состава |
|||
разрабо-танного |
отечественного прототипа |
прототипа «Holvi» |
разработанного |
отечественного прототипа |
|
Адгезионная прочность Rсц, МПа |
1,0…1,2 |
0,6…0,8 |
0,8…1,0 |
0,8…1,0 |
0,5…0,7 |
Когезионная прочность Rсж, МПа |
1,7…1,9 |
0,8…1,3 |
1,5…1,7 |
1,5…1,7 |
0,7…1,2 |
Жизнеспособность при хранении в открытых ёмкостях, час |
5…7 |
7…9 |
6…8 |
6…8 |
8…10 |
Время высыхания до степени «5» при (20±2)ºС, мин, не более |
47…50 |
22…31 |
40…43 |
52…55 |
24…34 |
Водоудерживающая способность, % |
– |
– |
– |
98 |
98 |
Рекомендуемая толщина одного слоя, мм |
1…5 |
1…5 |
1…5 |
5…15 |
10…20 |
Расход отделочного состава при
нанесении в 1 слой толщиной: – 1 мм, кг/м2 – 10 мм, кг/м2 |
0,6…0,8 – |
1,0…1,2 – |
0,5…1 – |
– 1,1…1,3 |
– 1,5…1,7 |
Наличие трещин вследствие усадки |
нет |
нет |
нет |
нет |
нет |
Удобоукладываемость |
хорошая |
хорошая |
хорошая |
хорошая |
хорошая |
Стойкость Пк к статическому воздействию воды при (20±2)ºС, ч |
>72 |
24 |
24 |
>72 |
24 |
Коэффициент паропроницаемости µ, мг/м·ч·Па |
0,056 |
0,069 |
0,051 |
0,011 |
0,014 |
Стоимость, руб. |
40 |
55 |
130 |
38 |
50 |
Библиографический список
- Логанина В.И., Кислицына С.Н., Макарова Л.В., Садовникова М.А. Реологические свойства композиционного известкового вяжущего с применением синтетических цеолитов//Известия высших учебных заведений. Строительство. –2013. –№ 4. –С. 37-42.
- Логанина В.И.,Петухова Н.А., Акжигитова Э.Р. Разработка органоминеральной добавки для сухих строительных смесей// Вестник БГТУ им. В.Г.Шухова.–2011.–№3.– С.8-12
- Логанина, В.И. Свойства известковых композитов с силикатсодержащими наполнителями / В.И.Логанина, Л.В. Макарова, К.А. Сергеева// Строительные материалы. – 2012.-№3. – С.30-35
- Логанина В.И., Давыдова О.А., Симонов Е.Е. Влияние активации диатомита на свойства известковых композиций// Известия вузов. Строительство.–2011.–№3.–С.20-24
- Логанина В.И., Давыдова О.А., Симонов Е.Е. Исследование закономерностей влияния золя кремниевой кислоты на структуру и свойства диатомита// Строительные материалы.–2011.–№12.– С.63-66