Введение
Репаративный остеогенез – сложный, четырехступенчатый процесс, зависящий от множества внешних факторов [1,2]. На практике часто встречаются случаи течения процесса репарации, осложненного целым рядом факторов: воздействие высокоэнергетического травмирующего агента, замедленная регенерация сосудов связанная с возрастными изменениями и т.д. [1-3]. Поэтому очень часты случаи замедления процесса репарации. Например, авторы в работе [3] ссылаясь на работу [4] приводят данные о том, что при хирургическом вмешательстве процесс репарации может затянуться до года и более. В подобных случаях требуются новые подходы к лечению [5,15].
В настоящее время значительный интерес представляет создание технологий широкого назначения, базирующихся на использовании различных физических принципов в направлении по изменению динамики и свойств физических, биофизических и физиологических процессов, возникающих в материальных средах и биологических объектах [5-14,16-18]. В предлагаемой работе рассматривается комбинированный метод воздействия актуальной информации в виде акустических и/или электромагнитных сигналов на сложную неравновесную систему, основанный на новых физических принципах действия и позволяющий, за счет взаимодействия физических полей с материальной средой, моделировать в системе изменения биологических и физических свойств, вероятность которых в обычном состоянии статистически мала. Предлагаемая технология воздействия может быть использована для решения разнообразных физико-технических, геофизических, экологических, санационных, санитарно-гигиенических, психофизических и иных медико-биологических проблем.
Представленная работа базируется на более ранних авторских экспериментальных исследованиях, описанных в [6,16,18] и др.. В [6] описан способ моделирования блокады сердца путем электромагнитного воздействия модулированным излучением на перикардиальную область. В [18] предлагается способ повышения вероятности моделируемой динамики физических процессов при взаимодействии физических полей и материальных сред. В [16] эндоваскулярный метод лазерного облучения крови – в частности в [18] некоторые гносеологические, методологические и методические аспекты механизмов по клиническим апробациям в результате применения разнообразных методов взаимодействия физических полей и материальных сред. Недостатками предложенной в [6] методики воздействия физических полей на материальные среды является их узкая направленность и невозможность адаптации к другим материальным объектам.
В настоящей работе рассмотрена технология, основанная на комбинированном воздействии трансформированных СВЧ, КВЧ, акустических и/или оптических стимулов, преобразованных из митогенетического сигнала, на неравновесную систему с целью повышения вероятности протекания в ней определенных (заранее известных) процессов. Некоторые аспекты предлагаемой технологии, базирующейся на фрактальных методах детерминированного хаоса, рассмотрены в [5,7-9,11-13]. В частности, в [8] рассмотрено построение математических моделей неравновесных дискретно-нелинейных систем путем восстановления многомерного хаотического аттрактора на базе анализа одномерной временной реализации – сигнала оригинальной системы.
Общая схема терапевтического воздействия:
Обобщенная схема терапевтического воздействия, основанного на новых физических принципах действия представлена на рис. 1. Здесь процедура репарации для объекта воздействия 1 (пациента) начинается с того, что из кости 2 производится забор образца ткани 3, для которой будет производится репарация. Далее, достаточное количество данного образца 4 помещается в активную питательную среду 5, где после добавления туда катализатора 6 будет форсирована требуемая стадия репаративного остеогенеза. В течении движения динамики процесса вплоть до достижении требуемой стадии процесса, производится регистрация сигнала с помощью мультиэлектродной системы (Multielectrode Arraуs, или MEA) [19, 20, 21] где система в течении длительного времени, через усиливающую аппаратуру 7 с последующей оцифровкой и обработкой на цифровой аппаратуре 8. Далее, полученный сигнал передается на модулятор 9, который в свою очередь через излучатель, облучая объект сверхкороткоимпульсным (порядка 1 нс) сверхширокополосным (ширина полосы порядка нескольких гигагерц) ЭМИ СВЧ-диапазона 10: будет генерировать стимулирующее воздействие 11 [22]. Особенностью нового физического принципа действия, в данном случае будет являться наличие благоприятных форсированных условий, моделирующих естественный геомагнитный фон планеты для воздействия в виде электромагнитного поля 12, создаваемого в месте воздействия. Для создания поля волн Луи де Бройля, как источника бозонов являющихся переносчиком полезной информации, требуется излучатель мягкого рентгеновского излучения 13 [22], создающий среду для переноса волн Луи Де Бройля (как источника волн вероятностей, запутанных бозонных состояний и нелокальных корреляций) в области воздействия 14 и модулируемого устройством 15. Для эффективного воздействия на объект 1 вокруг него с помощью излучателя 16 также создается постоянное электромагнитное поле 17, также для создания корректных и конгруэнтных форсированных условий моделирующих естественный геомагнитный фон планеты. Универсальность данной схемы воздействия обеспечивается тем, что для информационной передачи стимулирующего репарацию воздействия можно использовать весь существующий спектр воздействий (от широкополосного СВЧ и КВЧ электромагнитного излучения до механических воздействий в акустическом диапазоне, которые используются в существующей медицинской практике [1-3]).
Рис.1. Общая схема стимуляции на основе новых физических
принципов действия на примере репаративного остеогенеза
Вариант реализации терапевтического воздействия
Принцип организации терапевтического воздействия, в варианте, представленном на рис. 2 реализуется следующим образом. Объект воздействия 1 (в данном случае пациент) для воздействия на репаративный остеогенез, помещается внутрь магнитно-резонансного томографа (МРТ) 2. Томограф нужен для создания благоприятной электромагнитной среды, моделирующей естественный геомагнитный фон планеты в форсированном режиме при терапевтическом воздействии в виде воссозданного постоянного электромагнитного поля 3 вокруг объекта воздействия 1. Внутри постоянного электромагнитного поля необходимо создать благоприятную среду для передачи объекту воздействия 1 информационной составляющей. Роль подобной среды играет мягкое рентгеновское излучение 4, являющееся переносчиком волн Луи де Бройля, как источника бозонов, которые, в свою очередь, являются компонентой естественного варианта течения маловероятных событий в форсированном режиме, который предполагает статистический квантовый скачок событий малой вероятности к событиям статистически более достоверным [14,18]. Рентгеновский излучатель 5 управляется модулятором 6, работающим как в непрерывном, так и в импульсном режимах. Само же стимулирующее воздействие 7 осуществляется посредством электромагнитного поля, излучаемого широкополосным излучателем 8, работа которого управляется модулятором 9. Модулятор вкладывает в излучение информационную составляющую, полученную по описанной ранее схеме.
Рис.2. Вариант реализации терапевтического воздействия, основанного на новых физических принципах действия
Рис. 3 Генератор сверхкороткоимпульсного (порядка 1 нс) сверхширокополосного (ширина полосы порядка нескольких гигагерц) ЭМИ СВЧ-диапазона – по патенту [22]
Заключение
Таким образом, в нашей работе представлен универсальный метод стимулирующего воздействия на репаративный остеогенез, который может быть экстраполирован и на иные медико-биологические проблемы существующих научных парадигм. Использование новых физических принципов действия ), в том числе и по патенту [22], являясь дополнением к существующим стимулирующим процедурам позволит не только теоретически обосновать положительный эффект от стимулирующих процедур, но и обоснованно увеличить вероятность благоприятного или иного результата воздействия. Данный результат в некотором отдаленном будущем возможно проявит себя в системных технологиях дифференцированной регенерации конечностей высших биологических объектов, подобно регенерации конечностей некоторых пресмыкающихся. Пока остается открытым вопрос о многозадачной верификации феномена дальнодействия, основанного на нелокальных взаимодействиях в мезо- и макромире. Обсуждение данного вопроса выходит за рамки данной статьи, но будет рассмотрен в некотором будущем в рамках очередной публикации.
Библиографический список
- Шилин В.А., Сафронов А.А., Кожанова Т.Г. Стимуляция репаративного остеогенеза в эксперименте на модели ложного сустава у крыс // Вестник Оренбургского государственного университета – 2015 – № 3 (178). – С.218-222.
- Малиновский Е.Л., Надыров Э.А., Николаев В.И. Оптимизация репаративного остеогенеза при политравме // Новости хирургии – 2011 – № 5 (19). – С.17-22.
- Переслыцких П.Ф., Переслыцких Д.А. Репаративный остеогенез в растущих бедренных костях хомячков после создания диафизарных отверстий и воздействия низкочастотной вибрации (предварительное исследование) // Бюллетень ВСНЦ РАМН – 2012, № 4 (86) ч.2., 185-189.
- Tay W.H., de Steiger R., Richardson M., Gruen R., Balogh Z.J. Health outcomes of delayed union and nonunion of femoral and tibial shaft fractures // Injury. – 2014.– №10. – V.45. – P. 1653-1658.
- ТРАВМАТОЛОГИЯ. Национальное руководство, краткое издание.// Под редакцией акад.РАН Г.П. Котельникова, акад.РАН С.П. Миронова; М.: “ГЭОТАР-Медиа”, 2016, 521с.
- Пат. 1808139 СССР, G 09 В 23/28. Способ моделирования блокады сердца [Текст] / В.Ю. Гаврилов, В.М. Громов, В.И. Ковальков [и др.]. — №5046010/14; заявл. 08.06.92; опубл. 07.04.93. Бюл. №13 (76).
- Takens F. Detecting Strange Attractors in Turbulence // Dynamical Systems and Turbulence. Lecture Notes in Mathematics. Berlin : Springer – Verlag, 1981. 898 p. P. 366-381.
- Antipov O.I., Neganov V.A. Neural Network Prediction and Fractal Analysis of the Chaotic Processes in Discrete Nonlinear Systems // ISSN 1028-3358 Doklady Physics, 2011, Vol. 56, №1, P. 7-9.
- Головко В.А. Нейросетевые методы обработки хаотических процессов // VII Всероссийская научно-техническая конференция «Нейроинформатика 2005»: Лекции по нейроинформатике. М. : МИФИ, 2005. С. 43–91.
- Сверхслабое излучение и оптическое взаимодействие яйцеклеток и зародышей шпорцевой лягушки: диссертация… кандидата биологических наук: 03.00.30-03 / Володяев Илья Владимирович; [Место защиты: Моск. гос. ун-т им. М.В. Ломоносова. Биол. фак.], 2007. – 80 с. 164.
- Антипов О.И., Ардатов С.В., Гаврилов В.Ю. Способы нелокальной стимуляции процессов в биологических объектах, основанные на новых физических принципах действия // Известия Самарского научного центра Российской академии наук, т.17, №5(3), 2015 С.715-719.
- Антипов О.И., Захаров А.В., Неганов В.А., Пятин В.Ф. Исследование частотных диапазонов для пейсмейкеров иррадиационных явлений при световых воздействиях на сетчатку глаза человека путем анализа результатов применения фрактальных мер к ЭЭГ-сигналам // Физика волновых процессов и радиотехнические системы, – 2014. – Т. 17 – № 3 – С. 90-95.
- Антипов О.И., Захаров А.В., Пятин В.Ф. Сравнение возможностей фрактальных методов обработки ЭЭГ для обнаружения изменения в активности головного мозга человека при разной внешней освещенности // Инфокоммуникационные технологии. – 2014. – №2 (12). – С. 57-63.
- Baretto Lemos G., Borish V., Cole G.D., Ramelow S., Lapkiewicz R., Zeilinger A. Quantum imaging with undetected photons [Текст] // Nature, 2014. – V.512. – P. 409-412.
- Мирошниченко В.Ф., Ардатов С.В., Панкратов А.С. Особенности лечения повреждений опорно-двигательной системы у людей пожилого и старческого возраста: научно-практическое пособие для врачей. Самара: Волга-Бизнес-2009, 80с.
- Гаврилов В.Ю., Неганов В.А., Осипов О.В., Пряников И.В. Объективная реальность Торы. — М: Сайнс-Пресс, 2008. —104 с.
- Захаров А.В., Власов Я.В., Повереннова И.Е., Хивинцева Е.В., Антипов О.И. Особенности постуральных нарушений у больных рассеянным склерозом // Журнал неврологии и психиатрии им. C.C. Корсакова. 2014. Т. 114. № 2-2. С. 55-58.
- Гаврилов В.Ю., Клюев Д.С., Неганов В.А., Осипов О.В., Пряников И.В. Зеркальная реальность (nanometa). – Самара: ИУНЛ ПГУТИ, 2014. – 256 с.
- https://en.wikipedia.org/wiki/Multielectrode_array
- http://www.unn.ru/pages/issues/aids/2007/31.pdf
- https://hghltd.yandex.net/yandbtm?fmode=inject&url=https%3A%2F%2Fneurolab.gatech.edu%2Flabs%2Fpotter%2Fanimat%2Fmeart&tld=ru&lang=en&la=1493206528&tm=1493736103&text=купить%20Multielectrode%20Arraуs%2C%20или%20MEA%20система&l10n=ru&mime=html&sign=1caf6cee0c1e469526e6264f7f595169&keyno=0)
- http://bd.patent.su/2185000-2185999/pat/servl/servletf7ad.html