АНАЛИЗ ОБРАЗЦОВ ПЛЁНОК МЕТИЛАММОНИЯ ДИЙОДИДА СВИНЦА, ПОЛУЧЕННЫХ МЕТОДОМ ЦЕНТРИФУГИРОВАНИЯ

Перунков Максим Алексеевич1, Шамин Алексей Алексеевич2
1Пензенский государственный университет, магистр кафедры «нано- и микроэлектроника»
2Пензенский государственный университет, аспирант кафедры «нано- и микроэлектроника»

Аннотация
В данной статье описано получение и исследование слоя гибридного органо-неорганического перовскита с помощью сканирующего электронного микроскопа.

Ключевые слова: возобновляемые источники энергии, перовскит, сканирующий электронный микроскоп, СЭ ГОНП, центрифугирование


COMPARISON, SYNTHESIS AND PREPARATION OF TRANSPARENT CONDUCTIVE COATINGS

Perunkov Maxim Alexeevich1, Shamin Alexey Alexeevich2
1Penza State University, master at the department “Nano- and microelectronics”
2Penza State University, post-graduate student at the department “Nano- and microelectronics”

Abstract
This article describes the preparation and study of layer hybrid organic-inorganic perovskite with SEM.

Keywords: centrifuge method, perovskite, renewable energy sources, SEM, solar cells, solar cells based on perovskite


Рубрика: 05.00.00 ТЕХНИЧЕСКИЕ НАУКИ

Библиографическая ссылка на статью:
Перунков М.А., Шамин А.А. Анализ образцов плёнок метиламмония дийодида свинца, полученных методом центрифугирования // Современные научные исследования и инновации. 2017. № 4 [Электронный ресурс]. URL: https://web.snauka.ru/issues/2017/04/78294 (дата обращения: 19.04.2024).

Солнечные элементы на основе гибридных органо-неорганических перовскитов (ГОНП) находятся на передовой развития возобновляемых источников энергии. Способность преобразовывать солнечный свет в электрический ток такими элементами была открыта совсем недавно, в 2009 году. Однако, за небольшой промежуток времени, прошедший с тех пор, КПД солнечных элементов на основе ГОНП увеличился с 3% [1] до 22% [2], что несомненно является выдающимся результатом. В отличие от своих коллег «по цеху» (главным образом от кремниевых солнечных элементов) солнечные элементы на основе гибридных органо-неорганических перовскитов обладают явными преимуществами [3]. Среди них:

  1. Простота получения и изготовления. При производстве таких солнечных элементов используются дешевые и доступные технологии, такие как центрифугирование, спрей-пиролиз, роллерный метод и т.д.;
  2. Абсолютно нетоксичное производство, не загрязняющее окружающую среду;
  3. Возможность работы в небольшой лаборатории без использования дорогостоящего и громоздкого оборудования;
  4. Возможность повторного использования промышленных отходов, таких как старые отработанные автомобильные аккумуляторы, в качестве источника свинца;
  5. Малый вес итоговой конструкции;
  6. Способность поглощать солнечный свет в широком диапазоне длин волн;
  7. Полупрозрачность и гибкость [4].

В связи с описанными выше преимуществами солнечные элементы на основе ГОНП являются отлично альтернативой уже существующим солнечным элементам на основе кристаллического кремния за счет лучшего соотношения цены и качества, а также возможности их размещения на корпусах автомобилей, мобильных телефонов и крышах домов.

Структура такого солнечного элемента изображена на рисунке 1.


Рисунок 1 – Структура солнечного элемента на основе ГОНП

Непосредственно слой перовскита в самом общем случае представляет собой тонкую пленку метиламмония йодида свинца или метиламмония бромида свинца, который выступает донором электронов.

Образец полученного слоя гибридного органо-неорганического перовскита представлен на рисунке 2.

Рисунок 2 – Фотография образца стеклянных подложек с нанесенным на них покрытием ГОНП

Исследование полученных образцов c нанесенным на них слоем гибридного органо-неорганического перовскита проводилось с помощью сканирующего электронного микроскопа. На рисунке 3 представлено SEM – изображение, полученное с помощью данного микроскопа. Хорошо видно, что полученные покрытия являются плотными и равномерными по толщине [5].

Рисунок 3 – SEM – изображение образцов с нанесенным на них ГОНП

После проведения эксперимента было получено несколько образцов. Первые образцы получались полностью неоднородными и с плохой адгезией, что не может считаться удовлетворительным результатом, поскольку в таком случае КПД солнечных элементов на основе таких пленок гибридных органо-неорганических перовскитов будет варьироваться в пределах нуля, если они вообще будут работать.

Поэтому, применив дополнительные меры по очистке вытяжного шкафа и подобрав нужное соотношение веществ, получились образцы, обладающие лучшей адгезией. Что касается однородности, то как видно из рисунка 3, пленка имеет упорядоченную структуру, однако, ей еще далеко от идеальной. Однородность также может быть лучше. Связано это в первую очередь с тем, что химические вещества, используемые в данном эксперименте, обладают неудовлетворительной чистотой, поскольку получение абсолютно чистых веществ осложнено массой бюрократических процедур.

Тем не менее, было проведено измерение толщины пленки в зависимости от скорости центрифуги, поскольку толщина пленки ГОНП зависела только скорости вращении, т.к. растворитель был одной и той же вязкости (диметилформамид), а время вращения центрифуги неизменно составляло 20 секунд. Отношение толщины пленки от скорости вращения и времени вращения описаны в таблице 1.

Таблица 1 – Изменение толщины пленки от скорости вращения и времени вращения центрифуги

Время вращения центрифуги, с Скорость вращения, об/мин Толщина полученной пленки, нм
20 1500 270
20 2000 230
20 2500 210
20 3000 190

Оптимальная толщина пленки в 230 нм, была получена при скорости вращения 2000 об/мин [6]. Толщина пленки измерялась методом эллипсометрии на предприятии ОАО «НИИФИ».


Библиографический список
  1. Im J.-H., Lee Ch.-R., Lee J.-W., Park S.-W., Park N.-G. 6.5% efficient perovskite quantum-dot-sensitized solar cell, The royal society of chemistry – 2011 – P. 4088-4093
  2. Sivaram, Varun, Stranks, Samuel D., Snaith, Henry J. Outshining Silicon, Scientific American – 2015 – P. 44–46
  3. Cai B., Xing Y., Yang Zh., Zhang W.-H., Qui J. High performance hybrid solar cells sensitized by organolead halide perovskites, The royal society of chemistry – 2013 – P. 1480-1485
  4. Perovskite Photovoltaics 2015-2025: Technologies, Markets, Players. – 2015 – N 7 – P. 100 – 107.
  5. Liu D. Y., Kelly L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques // Nature Photonic – 2014. – P. 133-138.
  6. Abrusci A., Stranks S.D., Docampo Р., Yip Н. L., Jen A., Snaith H. J. High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers – 2015


Количество просмотров публикации: Please wait

Все статьи автора «Шамин Алексей Алексеевич»


© Если вы обнаружили нарушение авторских или смежных прав, пожалуйста, незамедлительно сообщите нам об этом по электронной почте или через форму обратной связи.

Связь с автором (комментарии/рецензии к статье)

Оставить комментарий

Вы должны авторизоваться, чтобы оставить комментарий.

Если Вы еще не зарегистрированы на сайте, то Вам необходимо зарегистрироваться:
  • Регистрация