Полигидроксиалканоаты (ПГА) – полимеры гидроксипроизводных жирных кислот микробиологичекого происхождения [1]. Они представляют собой группу универсальных сложных полиэфиров, продуцируемые многими микроорганизмами в качестве внутриклеточных соединений углерода и соединений для хранения энергии при несбалансированном состоянии роста. Наиболее известным представителем ПГА является гомополимер ПГБ [2]. В целом, исходя из длины углеродной цепи оксикислот, образующих полимеры, полигидроксиалканоаты подразделяют на три основные группы: 1) короткоцепочечные (short-chain-length, SCL), состоящие из кислот с длиной углеродной цепи от 3-х до 5-ти углеродных атомов; 2) среднецепочечные (medium-chain-length, MCL), в составе которых от 6 до 14 атомов углерода; 3) длинноцепочечные (long-chain-length, LCL) с содержанием кислот С17 и С18 [3].
С биотехнологической точки зрения полигидроксиалканоаты имеют два важных свойства, дающих им значительное преимущество по сревнению с другими синтетическими продуктами: они биоразрушаемы и биосовместимы. Термин “биоразрушаемый” применяется к любому полимеру, который быстро разрушается до CO2, воды и биомассы; это предполагает, что такие полимеры могут ассимилироваться многими видами микроорганизмов, таким образом предотвращающих их накопление в окружающей среде. Второе свойство – биосовместимость, показывает, что ПГА не вызывает токсического воздействия применительно к широкому кругу хозяев. ПГА иммунологически инертны, и они только медленно деградируют в человеческих тканях. Более того, следы ПГБ были найдены в мембранах клеток млекопитающих, а его предшественник, (R)-3-гидроксибутират, присутствует в крови в диапазоне миллимолярных концентраций. Все эти причины должны были бы оправдать использование ПГБ как биоматериалов для медицинских устройств. Однако их высокая кристалличность, хрупкая природа и тот факт, что они являются достаточно жесткими материалами, которые начинают деградировать при температуре, немного превышающей точку плавления, препятствовали их использованию. MCL-ПГА (являющиеся полукристаллическими термопластическими эластомерами), похоже, представляют собой более удачные биоматериалы для биомедицинских приложений. К сожалению, MCL-ПГА имеют низкие температуры перехода и более низкую кристалличность. Принимая во внимание преимущества и ограничения обоих видов полимеров, были сделаны попытки, основанные на достижениях биохимии, генетики и биотехнологии, получить гибридные SCL-MCL-сополимеры с целью достичь различных или улучшенных физико-химических свойств и более широкого спектра биотехнологических приложений ПГА [4].
Различные сополимеры ПГБ получались следующими процедурами. Манипуляция биотехнологическими процессами при культивировании различных бактерий (A. latus, B. cereus, P. pseudoflava – H. pseudoflava, P. cepacia, M. halodenitrificans, Azotobacter sp. и C. necator), при лимитировании азотом, на средах с глюкозой (или сахарозой в случае A. latus) и пропионовой кислотой (или другими пропионогенными источниками углерода) приводила к продукции ПГБ, содержащего случайное количество (R)-3-гидроксивалерата [5]. Эти сополимеры имели пониженную кристалличность и низкую температуру плавления, что приводило к улучшенной гибкости, прочности и более быстрой обработке [6]. Более того, сополимеры SCL-MCL, состоящие в основном из мономеров гидроксибутирата (ГБ) с небольшим количеством мономеров гидроксигексаноата (ГГ), имели свойства, похожие на таковые у полипропилена. Этот сополимер (поли(ГБ-ГГ)) является прочным и гибким материалом [7].
Генетическая инженерия также оказала влияние получение сополимеров SCL-MCL-ПГА. Экспрессия генов ПГА в Escherichia coli или в других микроорганизмах, не являющихся природными продуцентами, внесла свой вклад в увеличение выхода полимеров и изменение их состава по срвнению с ПГА дикого типа. Другие генетические подходы, которые также приводили к накоплению штаммов – сверхпродуцентов ПГА, основывались на выделении мутантов, у которых были удалены: во-первых, гены, кодирующие ферменты β-окисления; во-вторых, гены, кодирующие ферменты, относящиеся к глиоксилатному шунту; в-третьих, различные гены, кодирующие деполимеразы SCL-ПГА и MCL-ПГА. Дополнительно, трансформация этих мутантов генами, относящимися к кластеру ПГА, позволила синтезировать большое число различных полимеров с новыми свойствами и интересными характеристиками. Сополимеры ПГА, содержащие (R)-3-гидроксигексановую, (R)-3-гидроксиоктановую и (R)-3-гидроксидекановую кислоты, были синтезированы рекомбинантными мутантами E. coli (fadB-), экспрессирующими гены phaC1 и phaC2 из Pseudomonas aeruginosa и Burkholderia caryophylli, соответственно. Более того, когда E. coli трансформировали генетической конструкцией, несущей ген hbcT из Clostridium kluyveri (кодирующий 4-гидроксибутирил-CoA-трансферазу) и ген phaC из C. necator, различные полимеры накапливались даже при отсутствии генов phaA (кодирует β-кетотиолазу при синтезе ацетоацетил -CoA из ацетил-CoA) и phaB (кодирует NADPH-оксидоредуктазу). Другие авторы показали, что экспрессия гена, кодирующего редуктазу 3-кетоалкановых кислот, ассоциированных с белком-переносчиком (fabG), увеличивает продукцию сополимера ПГА в рекомбинантном штамме E. coli JM 109.
Технологические достижения в стратегиях ферментации и применение новых программ подачи субстрата также внесли свой вклад в оптимизацию выхода сополимеров у различных микроорганизмов и в получение других сополимеров с новыми или модифицированными структурами, и достаточно различающимися физико-химическими свойствами (от хрупких и кристаллических до гибких и резиноподобных полимеров [4].
Библиографический список
- Boyandin A. N., Nikolaeva E. D., Shabanov A. V., VasilievA. D. Obtaining and Investigation of Polymer Compositions Based on Poly-Hydroxybutyrate// Journal of Siberian Federal University. Biology 2. – 2014, №7. – 174 –185p.
- Chen, G. Q. A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry//Chem. Soc. Rev., 2009. – 2434 – 2446 p.
- Волова Т. Г., Севастьянов В. И., Шишацкая Е. И. Полиоксиалканоаты (ПОА) – биоразрушаемые полимеры для медицины// Новосибирск: Издательство СО РАН, 2003. – 330 с.
- Chen G.Q. Plastics from Bacteria: Natural Functions and Applications. Berlin: Springer-Verlag Berlin Heidelberg, 2010. – 449p.
- Ramsay BA, Lomaliza K, Chavarie C, Dube B, Bataille P, Ramsay JA (1990) Production of poly(b-hydroxybutyric-co-b-hydroxyвалериановая) acids. Appl Environ Microbiol 56: 2093–2098
- Findlay RH, White DC (1983) Polymeric beta-hydroxyalkanoates from environmental samples and Bacillus megaterium. Appl Environ Microbiol 45:71–78
- Abe H, Doi Y (2002) Side-chain effect of second monomer units on crystalline morphology, thermal properties, and enzymatic degradability for random copolyesters of (R)-3-hydroxybutyric acid with (R)-3-hydroxyalkanoic acids. Biomacromolecules 3:133–138