В 21-м веке стремительно набирают популярность нанотехнологии, которые проникают во все сферы нашей жизни, но прогресса в них не было бы без новых, экспериментальных методов исследований, одним из наиболее информативных является метод сканирующей зондовой микроскопии, которую изобрели и распространили нобелевские лауреаты 1986 года – профессор Генрих Рорер и доктор Герд Бинниг.
В мире произошла настоящая революция с появлением методов визуализации атомов. Стали появляться группы энтузиастов, конструировавшие свои приборы. В итоге получилось несколько удачных решений для визуализации результатов взаимодействия зонда с поверхностью. Были созданы технологии производства зондов с необходимыми параметрами.
Так что же представляет из себя зондовый микроскоп? В первую очередь это непосредственно зонд, который исследует поверхность образца, так же необходима система перемещения зонда относительно образца в двумерном или трехмерном представлении (перемещается по X-Y или X-Y-Z координатам). Все это дополняет регистрирующая система, которая фиксирует значение функции, зависящей от расстояния от зонда до образца. Регистрирующая система фиксирует и запоминает значение по одной из координат.
Основные типы сканирующих зондовых микроскопов можно разделить на 3 группы:
- Сканирующий туннельный микроскоп – предназначен для измерения рельефа проводящих поверхностей с высоким пространственным разрешением.
В СТМ острая металлическая игла проводится над образцом на очень малом расстоянии. При подаче на иглу небольшого тока между ней и образцом возникает туннельный ток, величину которого фиксирует регистрирующая система. Игла проводится над всей поверхностью образца и фиксирует малейшие изменение тоннельного тока, благодаря чему вырисовывается карта рельефа поверхности образца. СТМ первый из класса сканирующих зондовых микроскопов, остальные были разработаны позднее. - Сканирующий атомно-силовой микроскоп – используется для построения структуры поверхности образца с разрешением до атомарного. В отличии от СТМ с помощью этого микроскопа можно исследовать как проводящие так и непроводящие поверхности. Из-за способности не только сканировать но и манипулировать атомами, назван силовым.
- Ближнепольный оптический микроскоп – «усовершенствованный» оптический микроскоп, обеспечивающий разрешение лучше чем у обычного оптического. Повышение разрешения БОМа было достигнуто путем улавливания света от изучаемого объекта на расстояниях меньших, чем длинна волны. В случае если зонд микроскопа снабжен устройством для сканирования пространственного поля, то такой микроскоп называют сканирующим оптическим микроскопом ближнего поля. Такой микроскоп позволяет получить изображения поверхностей и с очень высоким разрешением.
На изображении (рис. 1) показана простейшая схема работы зондового микроскопа.
Рисунок 1. - Схема работы зондового микроскопа
Его работа основана на взаимодействии поверхности образца с зондом, это может быть кантилевер, игла или оптический зонд. При малом расстоянии между зондом и объектом исследования действия сил взаимодействия, такие как отталкивания притяжение и т.д., и проявление эффектов, таких как, туннелирование электронов, можно зафиксировать с помощью средств регистрации. Для детектирования этих сил используются очень чувствительные сенсоры способные уловить малейшие изменения. Пьезотрубки или плоскопараллельные сканеры используются как система развертки по координатам для получения растрового изображения..
К основным техническим сложностям при создании сканирующих зондовых микроскопов можно отнести:
- Обеспечение механической целостности
- Детекторы должны иметь максимальную чувствительность
- Конец зонда должен иметь минимальные размеры
- Создание системы развертки
- Обеспечения плавности зонда
Почти всегда полученное сканирующим зондовым микроскопом изображение плохо поддается расшифровке из-за искажений при получении результатов. Как правило необходима дополнительная математическая обработка. Для этого используется специализированное ПО.
В настоящее время, сканирующая зондовая и электронная микроскопия используются как дополняющие друг друга методы исследования из-за ряда физических и технических особенностей. За прошедшие годы применение зондовой микроскопии позволило получить уникальные научные исследования в областях физики, химии и биологии. Первые микроскопы были всего лишь приборами – индикаторами, помогающими в исследованиях, а современные образцы это полноценные рабочие станции, включающие в себя до 50 различных методик исследования.
Главной задачей этой передовой техники является получение научных результатов, но применение возможностей этих приборов на практике требует высокой квалификации от специалиста.
Библиографический список
- Сканирующий зондовый микроскоп . [Электронный ресурс]. URL: https://ru.wikipedia.org/wiki/Сканирующий_зондовый_микроскоп (дата обращения 23.10.2016).
- Сканирующий атомно-силовой микроскоп. [Электронный ресурс]. URL: https://ru.wikipedia.org/wiki/Сканирующий_атомно-силовой_микроскоп (дата обращения 23.10.2016).
- Сканирующий туннельный микроскоп. [Электронный ресурс]. URL: https://ru.wikipedia.org/wiki/Сканирующий_туннельный_микроскоп (дата обращения 23.10.2016).
- Сканирующая зондовая микроскопия биополимеров / Под редакцией И. В. Яминского, – М.: Научный мир, 1997, – 86 с.
- Миронов В. Основы сканирующей зондовой микроскопии / В. Миронов, – М.: Техносфера, 2004, – 143 с.
- Рыков С. А. Сканирующая зондовая микроскопия полупроводниковых материалов / С. А. Рыков, – СПБ: Наука, 2001, – 53 с.