Одной из основных задач, решаемых при проектировании промысловых трубопроводов, является определение устройства линейной части трубопровода. Так как трассы проектируемых трубопроводов зачастую проходят в общем коридоре с другими проектируемыми линейными коммуникациями, необходимо принимать все возможные меры для сохранения их целостности. При пересечении с автомобильными дорогами широко применяется прокладка проектируемых трубопроводов в защитных футлярах из стальных труб [1]. Особую трудность представляют подземные части трубопроводов, которые были проложены в сложных климатических условиях. Отказы и аварии трубопроводов, проложенных в данных условиях, происходят, наряду с другими факторами, из-за их чрезмерного изгиба, который сопровождается нестабильным положением системы грунт-труба-жидкость (газ) и неравномерной осадкой. Для предотвращения аварий трубопроводов, которые могут случиться из-за их чрезмерных изгибов, устанавливают влияние климатических условий, параметров эксплуатации, влияние грунтов, а также находят потенциально опасные участки. Для нахождения этих участков, наряду с техническими средствами, осуществляют расчеты путем решения задачи прочности и устойчивости. В нормативных документах, определяющих порядок расчета подземных напорных трубопроводов: СНиП 2.05.06-85* «Магистральные трубопроводы» (п.8.25), СП 34-116-97 «Инструкция по проектированию, строительству и реконструкции промысловых нефтегазопроводов» (п.8.1), указывается требование совместного расчета трубопровода и массива грунта. Актуальность развития методов расчета напряженно-деформированного состояния (НДС) подземных трубопроводов объясняется тем, что из-за большой протяженности увеличение толщины стенки трубопровода хотя бы на 1 мм приводит к значительному перерасходу материала, поскольку грунт для трубопровода является не только внешней нагрузкой, но и средой, в которой развиваются деформации линейного сооружения. В тоже время в нормативных документах нет указаний на то, как выполнять совместный расчет. Поэтому, исследование напряженно-деформированного состояния таких участков является важной и актуальной задачей, решение которой определяет безопасную эксплуатацию данного промыслового трубопровода [2-6].
В качестве объекта исследования был выбран участок проектируемого промыслового нефтесборного трубопровода Угутского месторождения. В программном комплексе “PIPESIM” был выполнен гидравлический расчет, на основании которого был определен требуемый диаметр проектируемого трубопровода – 219 мм. Расчет выполнен на максимальные значения объемов добычи жидкости по рассматриваемому району. По результатам гидравлических расчетов была проведена предварительная трассировка трубопровода. Нормативное давление в промысловом нефтесборном трубопроводе было принято по давлению срабатывания предохранительного клапана измерительной установки площадки куста скважины и составило 4,0 МПа. Для строительства трубопровода были приняты трубы из стали 09ГСФ, которая обладает повышенными прочностными свойствами. Далее были проведены прочностные расчеты по СП 34-116-97, на основании которых была выбрана требуемая толщина стенки трубопровода – 8 мм, а также минимальная глубина заложения трубопровода от поверхности земли до верхней образующей трубы – 1,8 м.
На основании принятых проектных решений был построен продольный профиль трассы нефтесборного трубопровода, на котором было отмечено место пересечения трубопровода с автомобильной дорогой. На данном участке трассы трубопровод прокладывается в защитном футляре длиной 45 м из стальных труб диаметром 426 мм. Участок продольный профиль трассы и схема укладки трубопровода через дорогу представлены на Рис.1. и Рис.2. соответственно.
Рис.1. Продольный профиль трассы трубопровода
Рис.2. Схема укладки трубопровода на переходе через автодорогу
Напряженно-деформированное состояние трубопровода в футляре исследовалось с помощью метода конечных элементов (МКЭ), реализуемого в программном комплексе «Autodesk Inventor». После создания твердотельной модели трубопровода был произведен анализ напряжений с учетом всех нагрузок, рассчитанных на стадии проектирования. Твердотельная модель трубопровода в футляре представлена на Рис. 3. Значения напряжений по длине трубопровода представлены на Рис. 4.
Рис.3. Твердотельная модель участка трубопровода в футляре
Рис.4. Распределение напряжений (σ) по длине (L) трубопровода
Выводы
Расчет напряженно-деформированного состояния секции трубопровода в защитном футляре показал, что Autodesk Inventor является универсальной системой автоматизированного проектирования и позволяет решать множество сложных задач. Основываясь на полученных результатах анализа напряженно-деформированного состояния можно сделать вывод о том, что все принятые ранее проектные решения обеспечивают безопасную эксплуатацию трубопровода в футляре в месте пересечения с автомобильной дорогой, так как максимальные значения напряжений, возникающие в трубопроводе, меньше предела текучести метала трубной стали. Таким образом, при расчетном давлении 4 МПа внутри трубопровода с толщиной стенки, соответствующей фактическому значению, прочность участка нефтепромыслового трубопровода обеспечивается и можно говорить об отсутствии существенного влияния защитного футляра на эксплуатационную пригодность исследуемого промыслового трубопровода.
Библиографический список
-
Мустафин Ф.М. Технология сооружения газонефтепроводов. – М.: «Издательство Недра», 2007. – 632 с..
-
Бурков П.В., Буркова С.П., Тимофеев В.Ю., Ащеулова А.А. и Клюс О.В. Анализ напряженно-деформированного состояния трубопровода в условиях вечной мерзлоты Вестник Кузбасского государственного технического университета., 2013. –– №. 6., – С. 77–79.
-
P.V. Burkov, D.Y. Chernyavsky, S.P. Burkova, A. Konan Simulation of pipeline in the area of the underwater crossing , IOP Conference Series: E. and Env. Sc. 21 (2014) 1-5.
-
P.V. Burkov, K. G. Kalmykova, S. P. Burkova, T. T. Do, Research of stress-deformed state of main gas-pipeline section in loose soil settlement. IOP Conference Series: E. and Env. Sc. 21 (2014) 5-7.
-
P.V. Burkov, S.P. Burkova, V.Y. Timofeev, Analysis of stress concentrators arising during MKY.2SH-26/53 support unit testing. Appl.ied Mech.anics and Mat.erials: 682 (2014) 216-223.
-
P.V. Burkov, S.P. Burkova, V.Y. Timofeev, Justifying a method of balancing crank-and-rod mechanism of mining roadheader. Applied Mechanics and Materials: 682 (2014) 270-25.