Система группового регулирования активной мощности гидроагрегатов (ГА) предназначена для выработки требуемой активной мощности всей ГЭС с помощью группы гидроагрегатов. При этом существует множество решений получения требуемой мощности всей ГЭС, а также на работу всех гидроагрегатов накладывается ряд ограничений, таких как плановый и не внеплановый ремонт, пуско-наладочные работы и т.д. Поэтому управление активной мощности является важной задачей, а для её решения используются методы нечёткой логики и функционального программирования.
Стоит отметить, что сейчас наблюдается тенденция перехода гидроэлектростанций к комплексным цифровым автоматическим системам управления и оснащения системами ГРАМ.
Групповой регулятор активной мощности осуществляет автоматическое управление и экономичное распределения нагрузок между электростанциями, процесс распределения осуществляется устройствами автоматического регулирования энергосистемы, с выхода системы сигнал поступает на вход станционной системы ГРАМ. Последняя выполняет автоматическое регулирование активной частоты и распределение нагрузок между гидротубинами ГЭС [1].
В системе группового регулирования активной мощности гидроагрегатов возможна реализация двух способов регулирования.

Рисунок 1 – Изменение суточной нагрузки гидроагрегатов
В работе использовались экспериментальные данные, собранные на Волжской ГЭС. Данные представляют собой массивы записанных измерений показателей работы гидроагрегатов в сети ГРАМ (задание от ГРАМ на все гидроагрегаты, суточная нагрузка всех гидроагрегатов, суточная нагрузка гидроагрегата №2, №4, №8,№9) Анализ экспериментальных данных показывает, что в процессах присутствуют достаточно большие динамические ошибки, в том числи и перерегулирование, а так же статические ошибки (ошибки в установившимся режиме). Так на рисунке 2 представлена ошибка регулирования активной мощности. Перерегулирование в переходных процессах достигает достигает 25%.

Рисунок 2 – Ошибка регулирования активной мощностью
Такая ошибка обусловлена, во первых некачественной настройкой регулятора активной мощности, а во вторых неудовлетворительной работы системы группового регулирования.
Первый способ заключается в равномерном распределении мощности между гидроагрегатами. Так как в процессе работы гидроагрегатов в системе ГРАМ активная мощность меняется непрерывно от 40 до 120 МВт [2], нагрузка равномерно распределяется на каждый гидроагрегат, с увеличением нагрузки число агрегатов в сети увеличивается на один, а с уменьшением гидроагрегат переходит на холостой ход.

где:
- количество гидроагрегатов в сети;
-общее количество гидроагрегатов.

где:
- перемещение лопастей рабочего колеса;
-перемещение лопаток направляющего аппарата.
.gif)
где:
- задание ГЭС от ГРАМ.

Рисунок 3 -Результат моделирования, где: gram_zad – задание от ГРАМ, gram_reg – задание от регулятора ГЭС, y – задание полученное по первому способу

Рисунок 4 – Формирование заданий для гидроагрегатов, где N0…N15- номера агрегатов


Рисунок 6 – Относительная погрешность моделирования полученная по первому способу, где gram_zad – задание от ГРАМ, gram_reg – задание от регулятора ГЭС
На рисунке 5 и рисунке 6 видно, что отклонение активной мощность от задания сформированной ГРАМ, колеблется относительно значения с амплитудой 0,5 МВт. Кроме того при скорости изменения заданной мощности 1МВт/сек динамическая погрешность не превышает 1.2МВт, следовательно, система управления соответствует заданным требованиям [3] и обеспечивает оптимальное регулирование по быстродействию.
На рисунке 4 видно, что недостатком такой системы являет скачкообразное изменение заданий активной мощности, что будет приводить в свою очередь к вибрациям и, следовательно, к износу оборудования.
Во втором способе в зависимости от нагрузки гидроагрегаты находятся в номинальном режиме работы, а нераспределенная мощность регулируется одним или несколькими гидроагрегатами.

где:
- количество гидроагрегатов в сети работающих в номинальном режиме ;
-количество гидроагрегатов вырабатывающих остаточную мощностью.
.gif)


Рисунок 8 – Формирование заданий для гидроагрегатов, где N0…N15- номера агрегатов


На рисунке 9 видно, что отклонение активной мощность от задания сформированной ГРАМ, колеблется относительно значения с амплитудой 0,5 МВт. Кроме того при скорости изменения заданной мощности 1МВт/сек динамическая погрешность не превышает 1МВт, следовательно, система управления соответствует заданным требованиям и обеспечивает максимальное значение КПД, так как каждый гидроагрегат в сети работает в интервале от 100 до 120 МВт.
На рисунке 10 видно, что в сравнении с первым перераспределение заданий активной мощности происходит с незначительным изменением на каждом гидроагрегате в сети.
Во втором способе в зависимости от нагрузки гидроагрегаты находятся в номинальном режиме работы, а нераспределенная мощность регулируется одним или несколькими гидроагрегатами.
Оба способа имеют свои достоинства и недостатки. Так, например, первый способ позволяет получить оптимальное регулирование активной мощности по быстродействию. А второй способ позволяет получить систему регулирования активной мощности с максимальным КПД.
Поэтому в зависимости от задания активной мощности и сложившейся ситуации на ГЭС необходимо комбинировать оба способа управления в системе регулирования активной мощностью гидроагрегатами.
Библиографический список
-
Технический отчет натурных испытаний гидроагрегата после реконструкции с определением рабочих характеристик Волжской ГЭС.
-
РД 153-34.0-35.519-98 Общие технические требования к управляющим подсистемам агрегатного и станционного уровней АСУ ТП ГЭС.
-
Браганец С.А., Гольцов А.С., Савчиц А.В. Система адаптивного управления и диагностики сервомоторов направляющего аппарата гидроагрегата с поворотно-лопастной турбиной: Инженерный вестник дона № 3 (26) / том 26 / 2013.