Химическая коррозия, наряду с морозным разрушением, является одной из ведущих причин потери работоспособности строительных материалов. На интенсивность коррозионного разрушения влияние оказывают три группы факторов:
- проницаемость материала для жидкой или газообразной среды, содержащей в своем составе коррозионно-активные агенты; проницаемость оказывает большое влияние на скорость деструктивных процессов, так как суммарная площадь стенок пор материала намного выше площади наружной поверхности изделия или конструкции;
- способность содержащихся в окружающей среде и поступающих в материал веществ реагировать с ним с образованием менее прочных, более растворимых или увеличивающихся в объеме продуктов реакции;
- наличие достаточного количества коррозионно-активных веществ в окружающей материал среде.
Основные процессы перемещения агрессивных веществ через бетон, включая геополимерный бетон, можно классифицировать на три типа следующим образом:
1. Поглощение и движение жидкостей в порах цементного камня в условиях окружающей среды, при которых бетон поглощает влагу за счет капиллярного всасывания из пор, заполненных жидкостью. Капиллярное всасывание происходит тогда, когда бетон находится в сухом или частично сухом состоянии, а в поровом пространстве на поверхности материала имеется влага. Этот тип проницаемости характерен для прибрежных сооружений, где хлоридные и сульфатные соли разносятся ветром и попадают на поверхность бетона.
После выпадения осадков в виде дождя на поверхности образуются хлоридные и сульфатные ионы, которые затем проникают в бетон, разрушая его.
2. Перемещение жидкой фазы в бетоне под давлением. Скорость движения жидкости описывается законом Дарси для ламинарного течения жидкости через поры. Она зависит от градиента давления и размера взаимосвязанных пор в материале. Течение жидкости в бетоне проходит в насыщенных условиях по сообщающимися порам размером более 120 мкм.
Для того чтобы оценить долговечность и надежность конструкций, таких, как дамбы, фундаменты и подземные сооружения, которые находятся в постоянном контакте с водой, необходимо определять проницаемость бетона.
3. Перемещение жидкой фазы, газа или ионов в порах материала, возникающее из-за градиента концентрации. Наряду с градиентом концентрации и размером капиллярных пор, скорость диффузии зависит от типа проникающего вещества и химических свойств бетона.
Диффузия газов в насыщенном жидкостью бетоне происходит очень медленно. Это явление более характерно для бетонов в наземных сооружениях, таких, как здания и мосты, где бетон находится в практически сухом состоянии. Для оценки долговечности сооружений, подвергающихся воздействию воды, необходимо определять диффузию хлоридных и сульфатных ионов.
Перемещение хлоридных ионов в порах бетона отличается от перемещения воды в бетоне, потому что бетон в данном случае сопротивляется еще и движению ионов. Диффузия включает в себя движение отдельных молекул или ионов из высококонцентрированных зон в менее концентрированные зоны. Диффузия происходит в условиях полного насыщения, а сорбция – при ненасыщенном состоянии.
Процесс диффузии может быть описан с помощью первого закона Фика:
где F – поток жидкости;
С – концентрация иона;
х – расстояние от поверхности;
D – коэффициент диффузии.
Это уравнение может быть применено лишь при стационарном потоке жидкости, где параметры потока – скорость, давление и плотность – постоянны в любой точке в любое время.
Для длительно продолжающейся диффузии, когда поток ионов неустойчив, можно применять второй закон Фика. В соответствии с этим законом изменение содержания ионов хлорида в единицу времени равно изменению потока на единицу длины:
Определяющее влияние на коррозию оказывает химическая структура материала. Стойкость к коррозии геополимерного камня на основе активированной щелочью золы-уноса зависит от внутренней упорядоченности компонентов в алюмосиликатном геле. Геополимерные материалы, полученные щелочной активацией, в тех случаях, когда активатором выступает гидроксид натрия, имеют более кристаллическую структуру, чем геополимеры, полученные в результате активации силикатом натрия [1].
При этом чем выше степень кристалличности, тем более коррозионностойки геополимеры в агрессивных средах, таких, как растворы серной и уксусной кислоты [1, 2]. Это явление при использовании активатора гидроксида натрия можно объяснить образованием более стабильной полимерной алюмосиликатной структуры с поперечными связями. В любом случае строительные растворы, полученные из геополимерного вяжущего на основе золы-уноса, обладают в кислых растворах более высокой коррозионной стойкостью, чем обычное портландцементное тесто [2].
Другой важной проблемой обеспечения долговечности геополимерных материалов является их чувствительность к щёлочно-кремнезёмным реакциям из-за их высокой щелочности. Учитывая небольшое количество СаО в этом виде материалов, по долговечности они могут отличаться от портландцемента. Исследования склонности геополимерных материалов к щёлочно-кремнезёмным реакциям показали, что геополимерные растворы, полученные на основе золы-уноса, активированной 8 М NaOH, характеризовались меньшим значением расширения по сравнению с портландцементными растворами [3]. В связи с отсутствием данных по долговечности геополимерных вяжущих на основе золы-уноса были проведены исследования геополимерных растворов на основе активированной щелочью золы-уноса класса F, подвергшихся химическому воздействию агрессивных сред (морской воды, сульфатов, кислот) и их стойкости к расширению в связи с возможными щёлочно-кремнезёмными реакциями.
Долговечность геополимерного бетона при действии коррозионно-активных сред выше, чем долговечность портландцементного бетона, что объясняется различиями минералогического состава и микроструктуры материалов [1]. Долговечность железобетонных конструкций на основе портландцемента определяется содержанием в его структуре силикатных и алюминатных фаз кальция, которые подвергаются разрушающему воздействию сульфатных ионов, содержащихся в почве, сточной или морской воде.
Повышенная коррозионная стойкость геополимерных материалов обусловлена тем, что в продуктах их твердения нет высокоосновных гидроалюминатов кальция, вызывающих сульфатную коррозию цементов, а также отсутствует свободная известь, выщелачивание которой приводит к разрушению цементного камня в мягких водах [1-3]. Вследствие этого по стойкости в среде с низкой гидрокарбонатной жесткостью, в минерализованных сульфатных и магнезиальных водах геополимерные бетоны превосходят бетоны не только на портландцементе, но и на сульфатостойком цементе. Кроме того, они являются стойкими к действию бензина и других нефтепродуктов, концентрированного аммиака, растворов сахара и слабых растворов органических кислот; отличаются также высокой биостойкостью.
В затвердевшем портландцементе C3A взаимодействует с сульфат-ионами в присутствии Ca(OH)2 с образованием эттрингита и гипса, что приводит к разрушительному расширению бетона и разрушению несвязанных гранулированных частиц. Причиной снижения долговечности бетона также является коррозия арматуры, которая в основном вызвана карбонизацией Са(ОН)2, что приводит к снижению рН цементирующей матрицы. Считается, что причины появления щёлочно-кремнезёмистых реакций – высокая влажность, присутствие щелочей и потенциально реакционных заполнителей [4]. Следовательно, низкое содержание Са в щелочных вяжущих на основе золы-уноса является важным фактором, который необходимо учитывать при создании долговечных материалов. При использовании такой золы-уноса для создания геополимеров основным продуктом реакции является щелочной алюмосиликатный гель с трехмерной структурой [5], который существенно отличается от C–S–H геля, образованного при гидратации портландцемента. При выдержке в течение 7-28 дней геополимерных растворных смесей на основе золы-уноса в сульфатном растворе и морской воде прочность образцов с увеличением продолжительности нахождения возрастала. Прирост прочности также отмечается и на образцах геополимеров на основе метакаолина. При этом наибольшей прочностью обладали вяжущие, в которых в качестве активаторов использовались растворимые силикаты [6].
В составе и микроструктуре геополимеров при выдержке образцов в солевом растворе не наблюдается никаких изменений [1, 2]. Тем не менее, в некоторых случаях было обнаружено присутствие фаз, таких, как сульфат натрия, что меньше связано с разрушением матрицы, чем с внутренней миграцией сульфатных ионов через пористую структуру. В связи с большим количеством Na в системе эти сульфатные ионы выпадают в осадок в зазорах или порах геополимерной матрицы в виде сульфата натрия.
В образцах, погруженных в морскую воду, ионы магния проникали в матрицу. В этом случае происходят обменные процессы между ионами магния и Na, что приводит к изменению морфологии и состава геля и незначительным изменениям прочности материала [1].
Различия в свойствах при испытании на долговечность геополимеров, активированных силикатами и гидроксидами щелочных металлов, вызваны структурными изменениями в образовавшемся щелочном алюмосиликатном геле, а также изменениями количества кристаллической фазы (цеолита) в матрице вследствие различного отношения Si/Al в системе [7].
Известно [7], что присутствие растворимых силикатов в активирующем растворе, как правило, снижает степень кристаллизации щелочеалюмосиликатных вяжущих и задерживает кристаллизацию цеолита. Однако исследования показывают [8], что, когда содержание силикатных ионов, присутствующих в растворе щелочного активатора, достигает порогового значения, образуется гель и происходят цеолитные процессы. Более того, присутствие силикатных ионов приводит к образованию более компактных структур с гелем с высоким содержанием Si. Это объясняет более высокую прочность геополимерных растворов, активированных жидким стеклом, по сравнению с геополимерами, активированными раствором гидроксида щелочного металла.
При исследовании коррозионной стойкости геополимеров к воздействию кислот было установлено, что геополимерные образцы обладают стойкостью к воздействию децинормального раствора соляной кислоты [1].
Выдержка неорганического полимера в высококислом растворе оказывает влияние на процесс деалюминирования алюмосиликатной структуры. В результате воздействия кислоты разрушаются связи Si–O–Al, увеличивается количество Si–OH и Al–ОН связей, что, в свою очередь, увеличивает число ионов кремниевой кислоты и димеров в растворе [7]. Этот процесс в конечном счете приводит к потере массы полимерных материалов: 2,5% в геополимерах, в которых активатором был щелочной гидроксид, и 4,2% в случае использования жидкого стекла [1].
Матрицы на основе золы-уноса имеют высокое содержание щелочи, но очень низкое содержание кальция [7]. По этой причине с потенциально нереакционноактивным заполнителем, какой используется в производстве портландцементного бетона, расширяющийся силикат-натрий-кальциевый гель не образуется [4]. Величина расширения геополимерного вяжущего на основе золы-уноса была меньше по сравнению с портландцементом [1].
Строительные растворы на основе активированной щелочью золы-уноса, независимо от типа используемого активатора, как правило, более долговечны, чем растворы на основе портландцемента [8]. Материалы на основе геополимерного вяжущего из активированной щелочью золы-уноса имеют стойкость к воздействию сульфатов и морской воды [7]. Геополимерные вяжущие не выдерживают деалюминирование только в высококислых средах. Кислотостойкость геополимерных бетонов выше, чем кислотостойкость бетонов на основе портландцемента.
Геополимерные бетоны имеют более высокую стойкость к хлоридным и сульфатным растворам, а также к коррозии выщелачивания. Повышенная коррозионная стойкость геополимеров в сравнении с портландцементом объясняется более низкой проницаемостью и отсутствием в их составе гидролизной извести.
Библиографический список
- Fernandez-Jimenez A. Durability of alkali-activated fly ash cementitious materials / A. Fernandez-Jimenez, I. Garcia-Lodeiro, A. Palomo // Journal of Materials Science, 2007. Vol. 42., Iss. 9, pp. 3055-3065.
- Bakharev T. Geopolymeric materials prepared using class F fly ash and elevated curing temperature, Cement and Concrete Research. 2005. Vol. 35, Iss. 6. P. 1224-1232.
- Bakharev T. Durability of geopolymer materials in sodium and magnesium sulfate solutions // Cement and Concrete Research. 2005. Vol. 35, Iss. 6. P. 1233-1246.
- Ерошкина Н.А. Методы оценки и повышения долговечности геополимерных строительных материалов на основе промышленных отходов: учеб. пособие / Н.А. Ерошкина, М.О. Коровкин. – Пенза: ПГУАС, 2014. – 115 с.
- Stark J, Wicht B. Durability of Dauerhaftigkeit von Beton. – Weimar, 1995. – 301 p.
- Palomo A. Alkaline activation of fly ashes. A 29Si NMR study of the reaction products / A. Palomo, S. Alonso, A. Fernandez-Jimenez, I. Sobrados, J. Sanz // Am. Ceram. Soc. 2004. Vol. 87, Iss. 6. P. 1141-1145.
- Palomo A. Chemical stability of cementitious materials based on metakaolin / A. Palomo, M.T. Blanco, M.L. Granizo, F. Puertas, T. Vazquez, M.W. Grutzeck // Cem. Concr. Res. 1999. N. 29. P. 997–1004.
- Davidovits J. Geopolymer Chemistry and Applications. Saint Quentin, France: Geopolymer Institute, 2008. 585 p.