Спектр используемых в промышленности жаростойких футеровочных материалов достаточно высок и отличается разнообразием в плане выбора вида материалов и способа использования [1…8].
В качестве более дешевой альтернативы традиционным материалам могут использоваться композиты на основе активированных молотых шлаков и глин [9…11]. Как показали ранее проведенные эксперименты, молотый металлургический шлак и глина в присутствии щелочного активизатора, создают достаточно прочную структуру, обладающую высокими эксплуатационными характеристиками [12…14].
Гранулометрический состав жаростойких заполнителей и их вводимое количество оказывает значительное влияние на термическую стойкость наполненных глиношлаковых материалов [15…18]. В связи с этим, чрезвычайно важной является оценка оптимизации структурной топологии высокотермостойких наполненных композитов. С этих позиций целесообразно определить межчастичные расстояния наполнителя в структуре вяжущего на основе глины и шлака. Такая оценка дает возможность достаточно точно оценить межчастичные расстояния, определяющие развитие трещин.
На рисунке 1 представлены зависимости расстояния между поверхностями частиц шамотного заполнителя и термостойкости композиций от содержания заполнителя с различными размерами частиц.
Из графиков видно, что максимальная термостойкость в 71 цикл обеспечивается при расстояниях межу поверхностями частиц шамотных зерен, равных0,6 мм. При этом средний размер зерен равен1,87 мми при содержании их в количестве 100% от массы вяжущего. При уменьшении среднего размера частиц шамотного боя до 0,924 мм максимум термостойкости в 42 цикла водных теплосмен обеспечивается при расстоянии между поверхностями частиц 0,27 мм, что соответствует 100% содержанию шамотного заполнителя от массы вяжущего. С уменьшением среднего размера частиц до 0,45 мм термостойкость существенно падает до максимального значения в 12 циклов при наполнении 80% от массы глиношлакового вяжущего. Оптимальное расстояние, обеспечивающее эту термостойкость, составляет 0,17 мм.
Рисунок 1 – Зависимости расстояний между поверхностью частиц шамотного заполнителя (1) и термостойкость глиношлакошамотных композитов (2) от содержания боя шамотного кирпича различного фракционного состава: а) бой шамотного кирпича фр.0,3-0,6 мм; б) бой шамотного кирпича фр.0,6-1,25 мм; в) бой шамотного кирпича фр. 1,25-2,5 мм.
Для конкретной матрицы с соотношением компонентов «шлак:глина», равным 60:40, при наполнении ее шамотными наполнителем со средним размером 1,87 мм, расстояние между зернами, равное 0,55-0,6 мм является оптимальным для создания условий, когда трещины развиваются без ветвления. При этом продолжительность распространения трещин позволяет получить композиционный материал с достаточно высокой термостокостью. Уменьшение расстояний между частицами (состав с боем шамотного кирпича фр. 0,3-0,6 мм) приводит к уменьшению времени распространения трещин от зерна к зерну и после первого-второго цикла испытаний на термостойкость трещина проходит расстояние между частицами заполнителя. При последующих циклах испытания трещины расширяются, что приводит к разрушению структуры. Это отчетливо подтверждается низкой термостойкостью композиций с зернами 0,3-0,6 мм(рис. 1., а), не превышающей 12 циклов.
Выявление закономерности подтверждает важную роль полиструктурности композитов в снижении трещинообразования их не только при развитии капиллярной усадки, но и при термических перепадах.
Библиографический список
- Горлов, Ю.П. Огнеупорные и теплоизоляционные материалы [Текст]: учебное пособие для техникумов / Ю.П. Горлов, Н.Ф. Еремин, Б.У. Седунов. -М.: Стройиздат, 1976.- 192 с., ил.
- Тарасова, А.П. Готовые сухие смеси для жаростойких бетонов [Текст] / А.П. Тарасова, Н.П. Жданова // Бетон и железобетон. – 1981. – №12. - С. 17.
- Жаростойкие бетоны [Текст] / Под ред. К.Д. Некрасова. -М.: Стройиздат, 1974.-176 с.
- Некрасов, К.Д. Жаростойкие вяжущие на жидком стекле и бетоны на их основе [Текст] / К.Д. Некрасов, А.П. Тарасова. – М.: Стройиздат, 1982.
- Стрелов, К.К. Теоретические основы технологии огнеупорных материалов [Текст] /К.К. Стрелов.- М.: Металлургия, 1985. – 480 с.
- Ферворнер, О. Огнеупорные материалы для стекловаренных печей [Текст] / О. Ферворнер, К. Берндт, пер. с нем. О.Н. Попова; под ред. А.С. Власова. – М.: Стройиздат, 1984. – 260 с, ил.
- Физико-химические и технологические основы жаростойких цементов и бетонов [Текст] / отв. ред И. В. Тананаев.- М.: «Наука», 1986. – 191 с, ил.
- Фомичев Н.А. Жаростойкие бетоны на основе металлургических шлаков [Текст] / Н.А. Фомичев.- М.:Стройиздат, 1972.
- Тарасов, Р.В. Эффективный жаростойкий материал на основе модифицированного глиношлакового вяжущего [Текст] / Р.В. Тарасов: канд. диссертация. – ПГАСА, 2002.-150 с.
- Калашников, В.И. Новый жаростойкий материал для футеровки промышленных печей [Текст] / В.И. Калашников, В.Л. Хвастунов, Р.В. Тарасов, Д.В. Калашников // Строительные материалы. – 2003. – №11. – С.40-42.
- Батынова, А.А. Технология производства материалов на основе активированного шлака и глин [Текст] / А.А. Батынова, Р.В. Тарасов, Л.В. Макарова // Современные научные исследования и инновации.- 2015.- № 1 [Электронный ресурс]. URL: http://web.snauka.ru/issues/2015/01/43378 (дата обращения: 06.01.2015).
- Слепова, И.Э. Оценка возможности использования глин месторождений Пензенской области для производства керамической продукции [Текст] / И.Э. Слепова, Р.В. Тарасов, Л.В. Макарова // Современные научные исследования и инновации.- 2014.- № 8 [Электронный ресурс].- URL: http://web.snauka.ru/issues/2014/08/37211 (дата обращения: 20.08.2014).
- Блохина, Т.П. Оценка воздушных и огневых усадочных деформаций глин месторождений Пензенской области [Текст] / Т.П. Блохина, Р.В. Тарасов, Л.В. Макарова // Современные научные исследования и инновации.- 2014.-№ 7. [Электронный ресурс].- URL: http://web.snauka.ru/issues/2014/08/37254 (дата обращения: 25.08.2014).
- Батынова, А.А. Анализ термических свойств металлургических шлаков [Текст] / А.А. Батынова, Р.В. Тарасов, Л.В. Макарова // Современные научные исследования и инновации.- 2015.- № 1 [Электронный ресурс]. URL:http://web.snauka.ru/issues/2015/01/43380 (дата обращения: 06.01.2015)
- Батынова, А.А. Анализ огнеупорных свойств композитов на основе металлургических шлаков и глин [Текст] / А.А. Батынова, Р.В. Тарасов, Л.В. Макарова // Современные научные исследования и инновации.- 2015.- № 1 [Электронный ресурс]. URL: http://web.snauka.ru/issues/2015/01/43495 (дата обращения: 08.01.2015).
- Батынова, А.А. Влияние рецептурных и технологических факторов на эксплуатационные свойства жаростойких материалов на основе молотых шлаков и глин [Текст] / А.А. Батынова, Р.В. Тарасов, Л.В. Макарова // Современные научные исследования и инновации.- 2015.- № [Электронный ресурс]. URL: http://web.snauka.ru/issues/2015/01/45013 (дата обращения: 17.01.2015).
- Батынова, А.А. Анализ теплопроводности теплоизоляционных материалов на основе металлургических шлаков и глин [Текст] / А.А. Батынова, Р.В. Тарасов, Л.В. Макарова // Современные научные исследования и инновации. 2015. № 1 [Электронный ресурс]. URL: http://web.snauka.ru/issues/2015/01/44984 (дата обращения: 17.01.2015).
- Тарасов, Р.В. Влияние введения наполнителя на характер трещинообразования жаростойких композитов на основе молотых шлаков и глин [Текст] / А.А. Батынова, Р.В. Тарасов, Л.В. Макарова // Современные научные исследования и инновации.- 2015.- № 1 [Электронный ресурс]. URL: http://web.snauka.ru/issues/2015/01/45541 (дата обращения: 17.01.2015).