Наибольший интерес для будущего строительства и строительного материаловедения будут представлять вяжущие, в частности, минеральношлаковые, состоящие из 40-60% шлака и 60-40% измельченных горных пород, геошлаковые, содержащие 10-20% шлака и 80-90% горных пород и геосинтетические (геополимерные) вяжущие из горных пород с активизаторами твердения и модифицирующими добавками. Первые из них отверждаются малыми добавками щелочей NaOH, KOH (2-3%) или смесью соды и известью (по 2-3%), последние, геосинтетические – более высокими дозировками этих активизаторов. Комбинация соды, получаемой малоотходным способом из углекислого газа или других щелочных водорастворимых солей и извести, должна иметь статус комплексного щелочного активизатора геошлаковых (ГШ), геосинтетических (ГС) композитов, в связи с возможностью прямого процесса регенерации гидроксидов щелочных металлов в теле композитов.
Учитывая, что цементирующая матрица вулканических горных пород, которых в земной коре содержится 64,7% по оценкам Бери Л., Мейсона Б. и Дитриха Р. [1], содержит альбит, алибито-анортит и анортит, преимущество следует отдать катиону натрия. Химический состав горной массы в отвалах примерно соответствует верхней мантии Земной коры и представлен преимущественно SiO2, Al2O3, Fe2O3, CaO, MgO, Na2O, K2O, SO3, P2O5, CO2 и др. В вещественном составе преобладают минеральные образования полиморфных модификаций кремнезема SiO2, кварца, кварцитов, песчаников, гравелитов, полевошпатовых пород, сульфатов, карбонатов, фосфатов, фторидов, пироксенов, аморфиболов, слоистых силикатов и др. Часто эти горные породы по своему качеству превосходят то нерудное сырье, которое добывают предприятия промышленности строительных материалов.
Замкнутый процесс образования щелочи в теле композита является экологически безопасным и может быть положен в основу новых материалов и улучшения экологии. Других вариантов масштабного безобжигового, малоэнергоемкого использования отходов горных пород пока наука не предложила и вряд ли сможет предложить в ближайшем будущем, если исходить из современных представлений о происхождении прочных горных пород без продолжительного времени (многих миллионов лет) кристаллизации в нормальных условиях без воздействия высоких температур и давлений.
Предпосылкой к получению геошлаковых (ГШ) и геосинтетических (ГС) вяжущих послужили работы, проводимые кафедрой «Технологии строительных материалов и деревообработки» (ТСМиД) ФГБОУ ВПО Пензенского государственного университета архитектуры и строительства, в области создания минеральношлаковых вяжущих и строительных материалов на их основе, начатые в 1993 г. За этот период был разработан целый ряд минеральношлаковых вяжущих: глиношлаковых, карбонатношлаковых (кальцито и доломитошлаковых), гравелитошлаковых, дацитошлаковых и силицитошлаковых вяжущих [2-6]. При этом показано, что значительное количество горных пород вулканического и осадочного происхождения – базальт, диабаз, диорит, гранит, дацит, глауконитовый песчаник и др. – способные отвердевать в смеси со шлаком и 2-3% щелочи или извести и соды в прессованном состоянии с формированием в нормальных условиях достаточной прочности (60-80 МПа). Преимущество таких материалов состоит в том, что они являются малощелочными, в отличие от шлакощелочных вяжущих и бетонов, разработанных Глуховским В.Д. и его школой [7]. Нами показательно [5], что высокопрочные материалы с прочностью 150-200 МПа могут быть получены при паротепловой обработке при t=80-90°C с обязательным последующим сухим прогревом при t=150-330°C. В этом случаи использованы специфические коллигативные свойства щелочи NaOH, высокомолярный раствор, который способен кипеть при t > 150°C. Такая особенность NaOH позволяет получить при сушке высокомолярный водный раствор (80 моль/л и более) в микропленках, кипящий при температуре 150-200°C и растворяющий в микропленках и микрокапельках многие горные породы, хотя дозировка щелочи не превышает 2-3%.
Разработанные нами низкощелочные (2-3% щелочи), смешанные глиношлаковые, карбонатношлаковые и опочношлаковые вяжущие существенно расширяют сырьевую базу для их производства и позволяют сократить расходы шлака в 1,5-2,0 раза и щелочных активизаторов NaOH, KOH, Na2CO3 в 2-3 раза по сравнению со шлакощелочными вяжущими. При этом прочностные показатели этих вяжущих и прессованных материалов на их основе практически не ухудшились по сравнению с чисто шлаковыми дозировками NaOH, Na2CO3. При этом глиношлаковые вяжущие являются высокотрещиностойкими, обладают “безопасной” усадкой, выдерживают без образования трещин 25-30 циклов попеременного увлажнения и высушивания при t= 105°С с повышением прочности и модуля упругости [2]. Шлакощелочной цементный камень разрушаются через 2-5 циклов попеременного увлажнения и высушивания. Доказано, что структурная топология таких смесей наиболее оптимальна и “прорастание” и цементация частиц целого ряда природных глин, молотых горных пород и кальциевых известняков продуктами гидратации шлака и взаимодействия их с растворенными веществами породы обеспечивают физико-технические показатели.
К чистым геополимерам можно отнести каолинощелочные вяжущие. По данным В.Д. Глуховского, глинистые минералы при сильно щелочной активации, когда содержание щелочи составляет 20-27%, от их массы, композиция затвердевает. В этом случае образуются цеолитоподобные гидроалюмосиликатные новообразования с общей формулой Na2(K2)O·Al2O3·(2-4)SiO2·nH2O типа анальцима, натролита, гидронефелина, мусковита и др. Естественно, что такое содержание щелочей делает технологию каолинощелочных вяжущих крайне неэкономичной и опасной из-за работы с высоко концентрированными растворами едкой щелочи. В наших опытах каолин с 5% NaOH при пропаривании в течение 5 часов при температуре 70 °C приобретал прочность и водостойкость, в то время как при нормально-влажностных условиях не образовывал твердеющей структуры в течение 10 лет.
Сведения о низкощелочной активации горных пород (2-3% щелочи) для получения высокопрочного вяжущего в литературе отсутствуют. Нами выявлен целый ряд горных пород осадочного происхождения которые отверждаются в нормально-влажностных условиях при 15-20%-ном содержании шлака. Доказано, что шлак выступает в таких системах, не столько как цементирующее вещество, а как сильный инициатор конденсации матричных частиц горной породы. Инициирующая способность шлака в щелочной среде существенно выше, чем клинкерного цемента.
Исследованные молотые горные породы - кремнеземистые и глауконитовые песчаники, чистые кварцевые пески, халцедоны, опалы, гравелиты, не твердеющие в нормальных условиях со щелочами NaOH и КOH, отвердевали в нормальных условиях при соотношении по массе «шлак :порода» 1:4 (2% NaOH) до прочности при сжатии 25-50 МПа. При прогреве при температуре 200-250°С прочность возрастала до 90-160 МПа. Таким образом, в свете полученных новых данных, шлаки следует рассматривать как ценнейший компонент при создании геополимеров. На чрезвычайно простых опытах доказан диффузионно-сквозьрастворный механизм цементации частиц горной породы растворенными продуктами шлака при нормальных условиях твердения. Выявлен механизм дополнительного отвердевания систем в процессе сухого прогрева при температуре 100-330 °C и микроповерхностного синтеза цементирующих веществ в контактах частиц горных пород.
При сухом прогреве силицитощелочных композиций, спрессованных при давлении 25 МПа, основным цементирующим веществом является кремнекислота, обеспечивающая прочность при сжатии 150-200 МПа. Изделиями на основе таких песчанико-щелочных вяжущих с жаростойкими зернистыми наполнителями могут использоваться для футеровки песчаных агрегатов.
Модификация силицито-щелочных вяжущих гидроксидом алюминия и малыми добавками шлака повышает длительную водостойкость и расширяет сферы применения силицитовых материалов в строительстве.
На настоящем этапе основной технологией формования высокопрочных геосинтетических вяжущих и материалов на их основе является силовое прессование и вибропрессование. Наиболее перспективным направлением необходимо считать литьевую технологию, которая успешно развивается для получения цементных бетонов нового поколения – реакционно порошковых бетонов с эффективными суперпластификаторами [7, 8]. Такие бетоны изготавливаются из цемента с молотой каменной мукой, мелкого песка, дисперсной стальной фиброй и суперпластификатора (СП) литьевым при содержании воды 9-11%. Прочность их при сжатии достигает 150-200 МПа и более, на растяжение при изгибе – 15-25 МПа. Самоуплотняющиеся бетоны с такими же прочностными характеристиками изготавливают с использованием мелкозернистого щебня фракции 3-10 мм. Благодаря эффективным гиперпластификаторам (ГП) бетонные смеси саморастекаются и самоуплотняются под действием собственного веса.
В связи с этим основная задача в области совершенствования технологии высокоэкономичных минерально-шлаковых, геошлаковых и геосинтетических особовысокопрочных бетонов состоит в разработке супер- и гиперпластификаторов, высокие водоредуцирующие эффективны в присутствии щелочей NaOH, КOH, соды и других солей, каустифицируемых известью.
Выполненные работы на кафедре ТСМиД Пензенского ГУАС свидетельствует о невозможности получения литых смесей при использовании более чем 20 видов зарубежных СП и ГП. В присутствии щелочей происходит значительное изменение электрокинетического потенциала минеральных частиц и шлака и все известные пластификаторы не «работают». Исходя из теоретических представлений о механизме действия СП и ГП, можно выдвинуть гипотезу о том, что суперпластификаторы для сильнощелочных систем должны быть не ноногенными и, вероятнее всего, не олигомерными, а полимерными.
На основании выполненных работ могут быть сформулированы основные принципы получения минерально-шлаковых, геошлаковых и геосинтетических вяжущих:
- В минерально-шлаковых вяжущих, согласно нашей классификации, минеральными компонентами, содержащимися в смешанном вяжущем в количестве 20-80% и в геошлаковых вяжущих – в количестве 5-20%, могут быть не только большая гамма горных пород, но и неактивные и малоактивные шлаки, кальцевые основные и кислые золы, пыли газоотчисток, цементные и известковые пыли, молотый бой любых керамических материалов (керамзита, аглопорита, плитки, кирпича, шамота) и стекла и многие минеральные отходы производства, не содержит гипса.
- Важным критерием интенсивного твердения прессованных и вибропрессованных изделий является дисперсность шлака и минерального компонента. Помол может быть раздельным и совместным до удельной поверхности 300-350 м2/кг. Более высокие результаты достигаются при более тонком измельчении горной породы, в связи с необходимостью растворения в сильнощелочной среде супертонких частиц минерального компонента из горных пород и техногенных отходов и получения композиционной цементирующей связки.
- При использовании в качестве активизатора смеси извести и соды (натриевых солей неорганических и органических кислот таблица), их целесообразно подвергать совместному помолу.
- Отходы мокрой магнитной сепарации и флотации руд цветных металлов можно использовать в виде суспензий, обезвоживания их сухими молотыми горными породами, техногенными отходами и шлаком до формовочной влажности.
- Твердые модифицирующие добавки (гидроксид алюминия, алюминат натрия, боксид, каолин, шамот и др.) целесообразно размалывать совместно со шлаком.
- Для повышения прочности минерально-шлаковых, геошлаковых и геосинтетических вяжущих и бетонов необходим их сухой прогрев при температурах изотермии от 100 до 250 °C в течении 5-10 час (в зависимости от массивности изделий) после паротепловой обработки при t=60-90°C.
- Минеральные мелкозернистые наполнители для бетонов должны иметь наибольший размер зерен не выше 5-8 мм. Для них целесообразно применять ту же горную породу, которая используется в тонкодисперсном виде и близкую к ней для реализации протекания твердофазных реакции на границе «вяжущее – заполнитель» и повышения технико-экономических показателей при использовании отсевов камнедробления.
- Во всех составах минерально-шлаковых, геошлаковых и геосинтетических вяжущих целесообразно использовать добавку глины в количестве 5-7% для улучшения прессования, повышения трещиностойкости и реализации позитивной “безопасной” усадки [2].
- С целью изготовления гидрофобных и высококоррозистойких строительных материалов на МШВ, ГШ и ГС в качестве гидрофобной добавки в щелочные системы необходимо использовать щелочестойкие стеараты цинка и кальция и вводить их в вяжущее при совместном помоле [10, 11].
- При силовом прессовании влажность смеси должна составлять 12-14%, давление прессования 25 МПа.
- При производстве мелкозернистых бетонов методом вибропрессования целесообразно использовать пластификаторы, наилучшим из которых для щелочных систем является ЛСТ.
Библиографический список
- Бери Л., Мейсон Б., Дитрих Р. Минералогия: Теоретические основы. Описание минералов. Диагностические таблицы. Пер. с английского. – М: Мир, 1987. – 592 с.
- Калашников В.И., Нестеров В.Ю., Хвастунов В.Л. Комохов П.Г. и др. Глиношлаковые строительные материалы. Монография. Пенза. 2000. – 208 с.
- Ерошкина Н.А. Калашников В.И., Коровкин М.О. Минерально-щелочные вяжущие. Монография. М-во образования и науки Российской Федерации, Федеральное гос. бюджетное образовательное учреждение высш. проф. образования “Пензенский гос. ун-т архитектуры и стр-ва”. Пенза, 2012.
- Ерошкина Н.А., Калашников В.И., Коровкин М.О. Вяжущее, полученное из магматических горных пород с добавками шлака, и бетон на его основе // Региональная архитектура и строительство. 2011. № 2. С. 62-65.
- Калашников В.И., Хвастунов В.Л., Макридин Н.И., Карташов А.А. Новые геополимерные материалы из горных пород, активированные малыми добавками шлака и щелочей // Строительные материалы. 2006. № 6. С. 93-95.
- Калашников В.И., Нестеров В.Ю., Гаврилова Ю.В., Кузнецов Ю.С. Теоретические и технологические основы получения высокопрочного силицитового геополимерного камня // Строительные материалы. 2006. № 5. С. 60-63.
- Щелочные вяжущие и мелкозернистые бетоны на их основе. Под редакцией В.Д. Глуховского. – Ташкент: Узбекистан, 1980.
- Калашников В.И. Основные принципы создания высокопрочных и особовысокопрочных бетонов. // Популярное бетоноведение. 2008. № 3. С. 102.
- Калашников В.И., Тараканов О.В., Кузнецов Ю.С., Володин В.М., Белякова Е.А. Бетоны нового поколения на основе сухих тонкозернисто-порошковых смесей // Инженерно-строительный журнал. 2012. № 8 (34). С. 47-53.
- Калашников В.И., Мороз М.Н., Нестеров В.Ю., Хвастунов В.Л., Василик П.Г. Органические гидрофобизаторы в минерально-шлаковых композиционных материалах из горных пород // Строительные материалы. 2005. № 4. С. 26-29.