Метод Монте-Карло можно определить как метод моделирования случайных величин с целью вычисления характеристик их распределений. Суть способа заключается в том, чтобы экспериментально воспроизвести событие, вероятность которого выражается через число , и приближённо оценить эту вероятность.
Поскольку метод Монте-Карло требует проведения большого числа испытаний, его часто называют методом статистических испытаний [1, с.46]. Теория этого метода указывает, как наиболее целесообразно выбрать случайную величину Х, как найти её возможные значения. В частности, разрабатываются способы уменьшения дисперсии используемых случайных величин, в результате чего уменьшается ошибка, допускаемая при замене искомого математического ожидания «а» его оценкой «а*».
Характерной особенностью метода Монте-Карло является использование случайных чисел (числовых значений некоторой случайной величины). Такие числа можно получать с помощью датчиков случайных чисел. Например, в языке программирования Turbo Pascal имеется стандартная функция random, значениями которой являются случайные числа, равномерно распределенные на отрезке [0; 1]. Сказанное означает, что если разбить указанный отрезок на некоторое число равных интервалов и вычислить значение функции random большое число раз, то в каждый интервал попадет приблизительно одинаковое количество случайных чисел. В языке программирования basin подобным датчиком является функция rnd.
Нами найден и исследован новый метод статистических измерений применительно для контроля качества потока углеводородов. Суть разработанного алгоритма состоит в следующем: в статическом режиме градуируется система по основному потоку (нефть, уголь, газ и т.п.) и строится традиционным методом градуировочная характеристика. Далее, по теореме Котельникова находится Δti- интервал времени между измерениями, необходимый для точного воспроизведения характеристики (случайного сигнала) измеряемого параметра [3]. Для конвейерных весов Δti=0,02с; для магистрального нефтепровода Δti=0,2с. По методу скользящего среднего, при каждом измерении контроллер вторичного прибора вычисляет значение функции, представленной на рисунке 2, от измеряемого параметра по формуле [2]:
где y(t)- значение измеряемого параметра;l- интервал времени между измерениями, с;
t- время, с.
Рисунок 1 – Случайное распределение выходного сигнала измерительной системы
Значение измеренного параметра y(ti) из памяти прибора (базовая градуировочная характеристика) и вычисленное по формуле (1), уточняется путем усреднения и заносится в память прибора как новая (уточненная) точка градуировочной характеристики. И так в течение всего периода работы прибора – новая характеристика усредняется с предварительно многократно усредненной (и теперь уже являющейся базовой) градуировочной характеристикой (т.н. метод «Монте-Карло»). Рисунок 2 поясняет процесс усреднения градуировочной характеристики, где 1- градуировочная характеристика, занесенная в процессор вторичного прибора; 2- градуировочная характеристика, вычисленная методом скользящего среднего; 3- уточненная градуировочная характеристика, полученная методом «Монте-Карло».
Рисунок 2 – Уточнение градуировочной характеристики измерительной системы
Т.о, делая общий вывод по способу и устройству, можно утверждать, что благодаря огромному энергетическому эквиваленту, на примере радиоизотопной системы измерений можно извлечь дополнительное количество информации за время t с помощью мощности Р, а также повысить точность измерительной системы, перенеся совершенствование системы регистрации в область наноотрезков времени.
Библиографический список
- Соболь И.М. Численные методы Монте-Карло. М., 1973.
- Коптева А.В., Проскуряков Р.М., Войтюк И.Н. Автоматическая корректировка метрологических характеристик измерителей случайных сигналов первичного преобразователя анализатора жидкостных потоков. – СПб.: Записки Горного института: РИЦ СПГГИ (ТУ). – Т. 195. – 2012. – С.277-280.