УДК 617-7

ОБЗОР СОВРЕМЕННЫХ НАНОКОМПОЗТНЫХ ПРИПОЕВ, ПРИМЕНЯЕМЫХ ПРИ ЛАЗЕРНОМ СВАРИВАНИИ БИОТКАНИ

Прошкин Олег Владимирович1, Васильев Валентин Степанович1
1Саратовский государственный университет, студент 4 курса

Аннотация
Одной из наиболее распространенных операций, выполняемых современным хирургом, является закрытие частичного или полного разрыва биологической ткани. Чтобы восстановить структуру биологической ткани, очень важно вовремя получить прочное и плотное соединение с минимальным повреждением соседних участков. Лазерная сварка, связанная с бесшовными методами соединения биологических тканей, наиболее безопасный способ соединения тканей, с одновременной стерилизацией раневой поверхности.

REVIEW OF MODERN NANOCOMPOSITE SOLDERS USED IN THE LASER WELDING OF BIOLOGICAL TISSUE

Proshkin Oleg Vladimirovich1, Vasilyev Valentin Stepanovich1
1Saratov State University, 4th year student

Abstract
One of the most common operations performed by a modern surgeon is to close a partial or complete rupture of a biological tissue. To restore the structure of biological tissue, it is very important to get a strong and tight connection in time, with minimal damage to nearby areas. Laser welding, related to seamless methods of joining biological tissue, the safest way to connect tissues, with a simultaneous sterilization of the wound surface.

Keywords: BSA, ICG, infrared laser, Laser welding, MWCNT, nanocomposite solders, SWCNT


Рубрика: 14.00.00 МЕДИЦИНСКИЕ НАУКИ

Библиографическая ссылка на статью:
Прошкин О.В., Васильев В.С. Review of modern nanocomposite solders used in the laser welding of biological tissue // Современные научные исследования и инновации. 2019. № 5 [Электронный ресурс]. URL: http://web.snauka.ru/issues/2019/05/89204 (дата обращения: 09.05.2019).

One of the most common operations performed by a modern surgeon is to close a partial or complete rupture of a biological tissue. To restore the structure of biological tissue , it is very important to get a strong and tight connection in time, with minimal damage to nearby areas.

Currently, one of the most promising areas of surgery is the use of seamless methods of connecting biological tissues. Such methods include, for example, the use of adhesive plasters with healing impregnations or combined glues. The applicability of such methods is limited, but they are all based on the method of wound closure with a hermetic barrier that prevents the penetration of unwanted bacteria and microorganisms, while at the same time preventing the edges from squeezing and the appearance of marginal necrosis.

Laser welding, also relates to methods for biological tissues seamless connection. It differs from the previous ones in a contactless, safest way to connect tissues, with simultaneous sterilization of the wound surface. The use of contact methods for the connection of tissues, including the use of glues, does not exclude the danger of introducing into the wound toxic components and the transfer of a viral infection. An important feature of laser welding is the locality of the impact of the laser beam, when focusing which is easily achieved millimeter and submillimeter dimensions of the exposed tissue area ( Fig . 1 ) . Another feature is the adaptive thermoregulation of the aft suture and adjacent tissues. Laser welding is difficult to replace with the postoperative restoration of the continuity of the smallest surgical objects, such as nerve fibers, blood capillaries, saponducting ducts, etc.


Figure 1. Picture from an optical microscope of laser welds.

To create seams using laser welding, the so -called laser nanocomposite solders which allow to create strong tight connection. These mixtures consist of an aqueous dispersion solution of albumin (a transport protein that forms part of the blood serum and cytoplasm of human and animal cells) into which carbon nanotubes are introduced . Under the influence of laser radiation and temperature, such solutions are transformed into a paste-like bulk composite, which in its structure is similar to the natural extracellular matrix . The resulting composite serves as the basis for the formation of the compound and the further development of biological tissue cells [ 1,2,3 ].

Different concentrations and compositions of nanocomposite solders are listed in Table 1 [ 4 ].

Used in Table 1 notation:

  1. BSA – bovine serum albumin;
  2. MWCNT – multi – walled carbon nanotubes;
  3. SWCNT – single – walled carbon nanotubes;
  4. ICG – indocyanine green.

Table 1. The concentration of the components of nanocomposite solders

Component

composition 1

% mass fraction

composition 2

% mass fraction

composition 3

% mass fraction

composition 4

% mass fraction

composition 5

% mass fraction.

BSA

25

25

25

25

25

MWCNT

0,1

0,1

SWCNT

0,1

0,1

ICG

0,01

0,01

0,01

Different concentrations and compositions of nanocomposite solders have different quality characteristics , the test results are shown in Table 2 . [ 5 ].

Table 2. The value of the strength of the seams to break.

composition

composition 1

composition 2

composition 3

composition 4

composition 5

Tensile strength, MPa

0,54±15

0,14±0,6

0,38±0,1

0,4±0,16

0,82±0,3

Modern technologies allow to create hermetic, durable, contactless, seamless biotissue compounds . In this review are the basic formulations used in this connection substances, and also shows characteristics of ain n s obtained in this way compounds.

Поделиться в соц. сетях

0

References
  1. V. Sriramoju, H. Savage, A. Katz, R. Muthukattil, R. Alfano Management of heat in laser tissue welding using NIR cover window material // Lasers in Surgery and Medicine. 2011. Vol. 43. № 10. PР. 991-997.
  2. R. Rohanizadeh, N. Kokabi Heat denatured/aggregated albumin- based biomaterial: Effects of preparation parameters on biodegradability and mechanical properties // Journal of Materials Science: Materials in Medicine. 2009. Vol. 20. № 12. PР. 2413-2418.
  3. A. Yu. Gerasimenko, L. P. Ichkitidze, A. A. Pavlov, E. S. Piyankov, D. I. Ryabkin, M. S. Savelyev, S. V. Selishchev, I. B. Rimshan, N. N. Zhurbina, and V. M. Podgaetskii. Laser System with Adaptive Thermal Stabilization for Welding of Biological Tissues // Biomedical Engineering, 2016, Vol. 49, No. 6, pp. 344-348.
  4. A. Yu. Gerasimenko, L.P. Ichkitidze, E.S. Piyankov, I.V. Pyanov, I.B. Rimshan, D.I. Ryabkin, M.S. Savelyev, V.M. Podgaetskii. Use of indocyanine green in Nanocomposite Solders to Increase Strength and Homogeneity in Laser Welding of Tendons// Biomedical Engineering 50 (5), 310-313.
  5. Ryabkin, Dmitry I; Rimshan, Irina B; Gerasimenko, Aleksandr Yu; Pyankov, Evgeny S; Zar, Vadim V. Research of dependence of the laser weld tensile strength on the protein denaturation temperature, which is part of the solder// 2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), 68-70.


Количество просмотров публикации: Please wait

Все статьи автора «Прошкин Олег Владимирович»


© Если вы обнаружили нарушение авторских или смежных прав, пожалуйста, незамедлительно сообщите нам об этом по электронной почте или через форму обратной связи.

Связь с автором (комментарии/рецензии к статье)

Оставить комментарий

Вы должны авторизоваться, чтобы оставить комментарий.

Если Вы еще не зарегистрированы на сайте, то Вам необходимо зарегистрироваться:
  • Регистрация