УДК 669

ПЕРСПЕКТИВА РАЗВИТИЯ КОСМИЧЕСКИХ МАТЕРИАЛОВ

Мочалова Анастасия Сергеевна1, Ротанова Валерия Александровна1, Ребяков Никита Сергеевич1
1ФГБОУ ВО Нижегородский государственный педагогический университет имени Козьмы Минина (Мининский университет), студент

Аннотация
В данной статье авторы рассматривают разнообразие материалов для создания космических объектов. Представлены перспективные композиты, которые помогут в будущем создать износостойкую технику будущего для новых космических открытий. Люди научились пользоваться лучшими свойствами материалов – это один из показателей технического прогресса.

Ключевые слова: , , , , , ,


Рубрика: 05.00.00 ТЕХНИЧЕСКИЕ НАУКИ

Библиографическая ссылка на статью:
Мочалова А.С., Ротанова В.А., Ребяков Н.С. Перспектива развития космических материалов // Современные научные исследования и инновации. 2017. № 6 [Электронный ресурс]. URL: http://web.snauka.ru/issues/2017/06/83253 (дата обращения: 08.06.2018).

Мир вокруг нас нельзя представить без материалов: они повсюду. Их бесчисленное множество: стекло, керамика, алюминий, ткань и т.д. Человечество с давних пор начало задумываться над вопросом: «В чем отличие того или иного материала, как он может пригодиться в жизни?». В наше время люди научились получать сплавы и композиты, т.е. пользоваться преимуществами любого вещества. И не только на Земле, но и в бесконечном космическом пространстве люди научились использовать материалы. Что они из себя представляют?

Металлы – это главные конструкционные материалы, используемые создания ракетно-космических машин. Итак, самые пригодные для космоса это (см. схему №1):

  • Алюминий считается любимцем авиаконструкторов, но для улучшения свойств из него приходится делать сплавы.
  • Железо – неотъемлемый металл любых инженерных сооружений. Железо в виде различных высокопрочных нержавеющих сталей стоит на втором месте среди материалов, применяемых для постройки ракет.
  • Медь также является одним из основных металлов электротехники и теплотехники.
  • Серебро – древнейший драгоценный металл, он является связующим звеном меди и стали в жидкостном двигателе ракеты. Титан и сплавы на его основе – важнейший металл космического века. Несмотря на общераспространенные убеждения, этот металл недостаточно широко используется в ракетной технике — из сплавов на основе титана чаще всего делают газовые баллоны высокого давления. [1]

Схема №1. Основные космические металлы

 

Но прогресс не стоит на месте, и при разработке средств исследования космического пространства требуются новые структуры, которые должны выдерживать нагрузки космических полетов. В наши дни идет стремительная разработка инновационных космических материалов, таких как интеллектуальные космические композиты, самовосстанавливающиеся материалы и нанотрубки. (см. схему №2)

Схема №2. Инновационные космические материалы

Самовосстанавливающийся материал. Ученые NASA в партнерстве с химиками Мичиганского университета создали многослойный полимерный материал, имеющий функцию «самозаживления». Если микрометеорит проделывает в космическом сооружении небольшое отверстие, то материал сам закрывает его, сохраняя таким образом герметичность данного объекта. В дальнейшем ученые планируют использовать такой материал для протекции космических станций от орбитного космомусора и микрометеоритов. Вот как выглядит этот материал: жидкая смола определенного состава (чаще всего на основе тиолов) составляет слой между двумя полимерными пластинками. Находясь в изоляции от воздуха такая смола может находится в виде вязкой жидкости очень долгое время. Во время внешнего воздействия, которое способно образовывать дыры в полимерных пластинах, смола вытекает из этой пластины и начинает реагировать с воздухом, и в процессе этого вступает в химическую реакцию. Вытекшая смола мгновенно становится твердой и закупоривает отверстие. Характер действия этого материала схож с процессом сворачивания крови. Самовосстанавливающийся композит пригоден даже для иллюминаторов, потому что он смола и полимерные панели, между которых она находится, прозрачны и бесцветны. [2]

Космические нанотехнологии. NASA совместно с космическим центр Джонсона заключили договор о совместной разработке и применении высочайших технологий и, в особенности, нанотехнологий для исследования пространства космоса. NASA планирует упростить вывод космомашин на орбиту с использованием космического лифта, изготовленного из нано-трубок. Они имеют высокую жесткость, что может помочь им затмить большинство новейших материалов для аэроконструкций. Композиты из нано-трубок снижают вес современных космических объектов примерно в два раза. Углеродные нанотрубки из одного слоя, созданные в 1991 году обладают чрезвычайной прочностью, поэтому они не очень подходят для основной ленты космического лифта. Они в 100 раз прочнее стали, и, соответственно примерно в 5 раз прочнее, чем предполагается для создания. Соотношение прочность и веса такого материала ленты больше, чем у высокозакаленной стали.

«Интеллектуальные» космические материалы. В последние 10 лет вместе с безостановочным совершенствованием уже имеющихся материалов, составляющий довольно важный технический и экономический прогресс благодаря неповторимому взаимодействию свойств, появились тенденции разработки новых материалов, которые активно взаимодействуют с внешней средой. Эти материалы стали называться «интеллектуальными». Они могут «чувствовать» свою физическую среду, внешние факторы и по-своему реагировать на них, т.е. способны проводить самодиагностику при появлении и прогрессировании деффекта, устранять его и оставаться в стабильном положении в критических зонах. Благодаря разнообразию свойств таких материалов их можно использовать почти во всех деталях конструкций космической техники (обтекатели, узлы трения, отсеки, корпусы и др.) [3]

Как мы видим, материалопроизводство не стоит на месте и космос – прямое тому подтверждение. Люди используют ранее известные нам материалы, а также создают материалы, которые имеют поразительные свойства. Но без совершенствования невозможно представить нашу жизнь и жизнь того, что нас окружает. Использование данных материалов позволит контролировать и прогнозировать состояние различных конструкций космических аппаратов в требуемый момент времени и даже на труднодоступных участках, значительно повысить ресурс систем и их надежность. Из анализа экспертных оценок специалистов следует, что в ближайшие 20 лет 90% современных материалов, применяемых в промышленности, будут заменены новыми, в частности «интеллектуальными», что позволит создать элементы конструкций, которые будут определять технический прогресс XXI в.

Поделиться в соц. сетях

0

Библиографический список
  1. Воронина Е.Н., Галанина Л.И., Зеленская Н.С., Лебедева В.М., Милеев В.Н., Новиков Л.С., Синолиц В.В., Спасский А.В. Механизмы ядерных реакций при взаимодействии космической радиации с материалами и наноструктурами// Известия Российской Академии Наук. Серия физическая. 2009 г. С.208-2012
  2. Молодцов Е.В., Минаков В.Т., Турченков В.А., Масенкис М.А. Некоторын вопросы обеспечения неметаллическими материалами авиационно-космической техники// Материалы и технологии для авиационно космической техники. 2005 г. С.28-29
  3. Хасанов О.Л., Двилис Э.С., Хасанов А.О., Петюкевич М.С., Ремизов И.И. Легкий композиционный материал для космической техники. 2015 г. С.6


Количество просмотров публикации: Please wait

Все статьи автора «Мочалова Анастасия Сергеевна»


© Если вы обнаружили нарушение авторских или смежных прав, пожалуйста, незамедлительно сообщите нам об этом по электронной почте или через форму обратной связи.

Связь с автором (комментарии/рецензии к статье)

Оставить комментарий

Вы должны авторизоваться, чтобы оставить комментарий.

Если Вы еще не зарегистрированы на сайте, то Вам необходимо зарегистрироваться:
  • Регистрация